Metamath Proof Explorer


Theorem ttukeylem7

Description: Lemma for ttukey . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses ttukeylem.1 φF:cardAB1-1 ontoAB
ttukeylem.2 φBA
ttukeylem.3 φxxA𝒫xFinA
ttukeylem.4 G=recszVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
Assertion ttukeylem7 φxABxyA¬xy

Proof

Step Hyp Ref Expression
1 ttukeylem.1 φF:cardAB1-1 ontoAB
2 ttukeylem.2 φBA
3 ttukeylem.3 φxxA𝒫xFinA
4 ttukeylem.4 G=recszVifdomz=domzifdomz=BranzzdomzifzdomzFdomzAFdomz
5 fvex cardABV
6 5 sucid cardABsuccardAB
7 1 2 3 4 ttukeylem6 φcardABsuccardABGcardABA
8 6 7 mpan2 φGcardABA
9 1 2 3 4 ttukeylem4 φG=B
10 0elon On
11 cardon cardABOn
12 0ss cardAB
13 10 11 12 3pm3.2i OncardABOncardAB
14 1 2 3 4 ttukeylem5 φOncardABOncardABGGcardAB
15 13 14 mpan2 φGGcardAB
16 9 15 eqsstrrd φBGcardAB
17 simprr φyAGcardAByGcardABy
18 ssun1 yyB
19 undif1 yBB=yB
20 18 19 sseqtrri yyBB
21 simpl φyAGcardAByayBφ
22 f1ocnv F:cardAB1-1 ontoABF-1:AB1-1 ontocardAB
23 f1of F-1:AB1-1 ontocardABF-1:ABcardAB
24 1 22 23 3syl φF-1:ABcardAB
25 24 adantr φyAGcardAByayBF-1:ABcardAB
26 eldifi ayBay
27 26 ad2antll φyAGcardAByayBay
28 simprll φyAGcardAByayByA
29 elunii ayyAaA
30 27 28 29 syl2anc φyAGcardAByayBaA
31 eldifn ayB¬aB
32 31 ad2antll φyAGcardAByayB¬aB
33 30 32 eldifd φyAGcardAByayBaAB
34 25 33 ffvelcdmd φyAGcardAByayBF-1acardAB
35 onelon cardABOnF-1acardABF-1aOn
36 11 34 35 sylancr φyAGcardAByayBF-1aOn
37 onsuc F-1aOnsucF-1aOn
38 36 37 syl φyAGcardAByayBsucF-1aOn
39 11 a1i φyAGcardAByayBcardABOn
40 11 onordi OrdcardAB
41 ordsucss OrdcardABF-1acardABsucF-1acardAB
42 40 34 41 mpsyl φyAGcardAByayBsucF-1acardAB
43 1 2 3 4 ttukeylem5 φsucF-1aOncardABOnsucF-1acardABGsucF-1aGcardAB
44 21 38 39 42 43 syl13anc φyAGcardAByayBGsucF-1aGcardAB
45 ssun2 ifGsucF-1aFsucF-1aAFsucF-1aGsucF-1aifGsucF-1aFsucF-1aAFsucF-1a
46 eloni F-1aOnOrdF-1a
47 ordunisuc OrdF-1asucF-1a=F-1a
48 36 46 47 3syl φyAGcardAByayBsucF-1a=F-1a
49 48 fveq2d φyAGcardAByayBFsucF-1a=FF-1a
50 1 adantr φyAGcardAByayBF:cardAB1-1 ontoAB
51 f1ocnvfv2 F:cardAB1-1 ontoABaABFF-1a=a
52 50 33 51 syl2anc φyAGcardAByayBFF-1a=a
53 49 52 eqtr2d φyAGcardAByayBa=FsucF-1a
54 velsn aFsucF-1aa=FsucF-1a
55 53 54 sylibr φyAGcardAByayBaFsucF-1a
56 48 fveq2d φyAGcardAByayBGsucF-1a=GF-1a
57 ordelss OrdcardABF-1acardABF-1acardAB
58 40 34 57 sylancr φyAGcardAByayBF-1acardAB
59 1 2 3 4 ttukeylem5 φF-1aOncardABOnF-1acardABGF-1aGcardAB
60 21 36 39 58 59 syl13anc φyAGcardAByayBGF-1aGcardAB
61 56 60 eqsstrd φyAGcardAByayBGsucF-1aGcardAB
62 simprlr φyAGcardAByayBGcardABy
63 61 62 sstrd φyAGcardAByayBGsucF-1ay
64 53 27 eqeltrrd φyAGcardAByayBFsucF-1ay
65 64 snssd φyAGcardAByayBFsucF-1ay
66 63 65 unssd φyAGcardAByayBGsucF-1aFsucF-1ay
67 1 2 3 ttukeylem2 φyAGsucF-1aFsucF-1ayGsucF-1aFsucF-1aA
68 21 28 66 67 syl12anc φyAGcardAByayBGsucF-1aFsucF-1aA
69 68 iftrued φyAGcardAByayBifGsucF-1aFsucF-1aAFsucF-1a=FsucF-1a
70 55 69 eleqtrrd φyAGcardAByayBaifGsucF-1aFsucF-1aAFsucF-1a
71 45 70 sselid φyAGcardAByayBaGsucF-1aifGsucF-1aFsucF-1aAFsucF-1a
72 1 2 3 4 ttukeylem3 φsucF-1aOnGsucF-1a=ifsucF-1a=sucF-1aifsucF-1a=BGsucF-1aGsucF-1aifGsucF-1aFsucF-1aAFsucF-1a
73 38 72 syldan φyAGcardAByayBGsucF-1a=ifsucF-1a=sucF-1aifsucF-1a=BGsucF-1aGsucF-1aifGsucF-1aFsucF-1aAFsucF-1a
74 sucidg F-1acardABF-1asucF-1a
75 34 74 syl φyAGcardAByayBF-1asucF-1a
76 ordirr OrdF-1a¬F-1aF-1a
77 36 46 76 3syl φyAGcardAByayB¬F-1aF-1a
78 nelne1 F-1asucF-1a¬F-1aF-1asucF-1aF-1a
79 75 77 78 syl2anc φyAGcardAByayBsucF-1aF-1a
80 79 48 neeqtrrd φyAGcardAByayBsucF-1asucF-1a
81 80 neneqd φyAGcardAByayB¬sucF-1a=sucF-1a
82 81 iffalsed φyAGcardAByayBifsucF-1a=sucF-1aifsucF-1a=BGsucF-1aGsucF-1aifGsucF-1aFsucF-1aAFsucF-1a=GsucF-1aifGsucF-1aFsucF-1aAFsucF-1a
83 73 82 eqtrd φyAGcardAByayBGsucF-1a=GsucF-1aifGsucF-1aFsucF-1aAFsucF-1a
84 71 83 eleqtrrd φyAGcardAByayBaGsucF-1a
85 44 84 sseldd φyAGcardAByayBaGcardAB
86 85 expr φyAGcardAByayBaGcardAB
87 86 ssrdv φyAGcardAByyBGcardAB
88 16 adantr φyAGcardAByBGcardAB
89 87 88 unssd φyAGcardAByyBBGcardAB
90 20 89 sstrid φyAGcardAByyGcardAB
91 17 90 eqssd φyAGcardAByGcardAB=y
92 91 expr φyAGcardAByGcardAB=y
93 npss ¬GcardAByGcardAByGcardAB=y
94 92 93 sylibr φyA¬GcardABy
95 94 ralrimiva φyA¬GcardABy
96 sseq2 x=GcardABBxBGcardAB
97 psseq1 x=GcardABxyGcardABy
98 97 notbid x=GcardAB¬xy¬GcardABy
99 98 ralbidv x=GcardAByA¬xyyA¬GcardABy
100 96 99 anbi12d x=GcardABBxyA¬xyBGcardAByA¬GcardABy
101 100 rspcev GcardABABGcardAByA¬GcardAByxABxyA¬xy
102 8 16 95 101 syl12anc φxABxyA¬xy