Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
AC equivalents: well-ordering, Zorn's lemma
ttukeylem7
Next ⟩
ttukey2g
Metamath Proof Explorer
Ascii
Unicode
Theorem
ttukeylem7
Description:
Lemma for
ttukey
.
(Contributed by
Mario Carneiro
, 15-May-2015)
Ref
Expression
Hypotheses
ttukeylem.1
⊢
φ
→
F
:
card
⋃
A
∖
B
⟶
1-1 onto
⋃
A
∖
B
ttukeylem.2
⊢
φ
→
B
∈
A
ttukeylem.3
⊢
φ
→
∀
x
x
∈
A
↔
𝒫
x
∩
Fin
⊆
A
ttukeylem.4
⊢
G
=
recs
z
∈
V
⟼
if
dom
z
=
⋃
dom
z
if
dom
z
=
∅
B
⋃
ran
z
z
⋃
dom
z
∪
if
z
⋃
dom
z
∪
F
⋃
dom
z
∈
A
F
⋃
dom
z
∅
Assertion
ttukeylem7
⊢
φ
→
∃
x
∈
A
B
⊆
x
∧
∀
y
∈
A
¬
x
⊂
y
Proof
Step
Hyp
Ref
Expression
1
ttukeylem.1
⊢
φ
→
F
:
card
⋃
A
∖
B
⟶
1-1 onto
⋃
A
∖
B
2
ttukeylem.2
⊢
φ
→
B
∈
A
3
ttukeylem.3
⊢
φ
→
∀
x
x
∈
A
↔
𝒫
x
∩
Fin
⊆
A
4
ttukeylem.4
⊢
G
=
recs
z
∈
V
⟼
if
dom
z
=
⋃
dom
z
if
dom
z
=
∅
B
⋃
ran
z
z
⋃
dom
z
∪
if
z
⋃
dom
z
∪
F
⋃
dom
z
∈
A
F
⋃
dom
z
∅
5
fvex
⊢
card
⋃
A
∖
B
∈
V
6
5
sucid
⊢
card
⋃
A
∖
B
∈
suc
card
⋃
A
∖
B
7
1
2
3
4
ttukeylem6
⊢
φ
∧
card
⋃
A
∖
B
∈
suc
card
⋃
A
∖
B
→
G
card
⋃
A
∖
B
∈
A
8
6
7
mpan2
⊢
φ
→
G
card
⋃
A
∖
B
∈
A
9
1
2
3
4
ttukeylem4
⊢
φ
→
G
∅
=
B
10
0elon
⊢
∅
∈
On
11
cardon
⊢
card
⋃
A
∖
B
∈
On
12
0ss
⊢
∅
⊆
card
⋃
A
∖
B
13
10
11
12
3pm3.2i
⊢
∅
∈
On
∧
card
⋃
A
∖
B
∈
On
∧
∅
⊆
card
⋃
A
∖
B
14
1
2
3
4
ttukeylem5
⊢
φ
∧
∅
∈
On
∧
card
⋃
A
∖
B
∈
On
∧
∅
⊆
card
⋃
A
∖
B
→
G
∅
⊆
G
card
⋃
A
∖
B
15
13
14
mpan2
⊢
φ
→
G
∅
⊆
G
card
⋃
A
∖
B
16
9
15
eqsstrrd
⊢
φ
→
B
⊆
G
card
⋃
A
∖
B
17
simprr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
→
G
card
⋃
A
∖
B
⊆
y
18
ssun1
⊢
y
⊆
y
∪
B
19
undif1
⊢
y
∖
B
∪
B
=
y
∪
B
20
18
19
sseqtrri
⊢
y
⊆
y
∖
B
∪
B
21
simpl
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
φ
22
f1ocnv
⊢
F
:
card
⋃
A
∖
B
⟶
1-1 onto
⋃
A
∖
B
→
F
-1
:
⋃
A
∖
B
⟶
1-1 onto
card
⋃
A
∖
B
23
f1of
⊢
F
-1
:
⋃
A
∖
B
⟶
1-1 onto
card
⋃
A
∖
B
→
F
-1
:
⋃
A
∖
B
⟶
card
⋃
A
∖
B
24
1
22
23
3syl
⊢
φ
→
F
-1
:
⋃
A
∖
B
⟶
card
⋃
A
∖
B
25
24
adantr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
-1
:
⋃
A
∖
B
⟶
card
⋃
A
∖
B
26
eldifi
⊢
a
∈
y
∖
B
→
a
∈
y
27
26
ad2antll
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
∈
y
28
simprll
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
y
∈
A
29
elunii
⊢
a
∈
y
∧
y
∈
A
→
a
∈
⋃
A
30
27
28
29
syl2anc
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
∈
⋃
A
31
eldifn
⊢
a
∈
y
∖
B
→
¬
a
∈
B
32
31
ad2antll
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
¬
a
∈
B
33
30
32
eldifd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
∈
⋃
A
∖
B
34
25
33
ffvelcdmd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
-1
a
∈
card
⋃
A
∖
B
35
onelon
⊢
card
⋃
A
∖
B
∈
On
∧
F
-1
a
∈
card
⋃
A
∖
B
→
F
-1
a
∈
On
36
11
34
35
sylancr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
-1
a
∈
On
37
onsuc
⊢
F
-1
a
∈
On
→
suc
F
-1
a
∈
On
38
36
37
syl
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
suc
F
-1
a
∈
On
39
11
a1i
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
card
⋃
A
∖
B
∈
On
40
11
onordi
⊢
Ord
card
⋃
A
∖
B
41
ordsucss
⊢
Ord
card
⋃
A
∖
B
→
F
-1
a
∈
card
⋃
A
∖
B
→
suc
F
-1
a
⊆
card
⋃
A
∖
B
42
40
34
41
mpsyl
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
suc
F
-1
a
⊆
card
⋃
A
∖
B
43
1
2
3
4
ttukeylem5
⊢
φ
∧
suc
F
-1
a
∈
On
∧
card
⋃
A
∖
B
∈
On
∧
suc
F
-1
a
⊆
card
⋃
A
∖
B
→
G
suc
F
-1
a
⊆
G
card
⋃
A
∖
B
44
21
38
39
42
43
syl13anc
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
suc
F
-1
a
⊆
G
card
⋃
A
∖
B
45
ssun2
⊢
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
⊆
G
⋃
suc
F
-1
a
∪
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
46
eloni
⊢
F
-1
a
∈
On
→
Ord
F
-1
a
47
ordunisuc
⊢
Ord
F
-1
a
→
⋃
suc
F
-1
a
=
F
-1
a
48
36
46
47
3syl
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
⋃
suc
F
-1
a
=
F
-1
a
49
48
fveq2d
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
⋃
suc
F
-1
a
=
F
F
-1
a
50
1
adantr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
:
card
⋃
A
∖
B
⟶
1-1 onto
⋃
A
∖
B
51
f1ocnvfv2
⊢
F
:
card
⋃
A
∖
B
⟶
1-1 onto
⋃
A
∖
B
∧
a
∈
⋃
A
∖
B
→
F
F
-1
a
=
a
52
50
33
51
syl2anc
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
F
-1
a
=
a
53
49
52
eqtr2d
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
=
F
⋃
suc
F
-1
a
54
velsn
⊢
a
∈
F
⋃
suc
F
-1
a
↔
a
=
F
⋃
suc
F
-1
a
55
53
54
sylibr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
∈
F
⋃
suc
F
-1
a
56
48
fveq2d
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
⋃
suc
F
-1
a
=
G
F
-1
a
57
ordelss
⊢
Ord
card
⋃
A
∖
B
∧
F
-1
a
∈
card
⋃
A
∖
B
→
F
-1
a
⊆
card
⋃
A
∖
B
58
40
34
57
sylancr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
-1
a
⊆
card
⋃
A
∖
B
59
1
2
3
4
ttukeylem5
⊢
φ
∧
F
-1
a
∈
On
∧
card
⋃
A
∖
B
∈
On
∧
F
-1
a
⊆
card
⋃
A
∖
B
→
G
F
-1
a
⊆
G
card
⋃
A
∖
B
60
21
36
39
58
59
syl13anc
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
F
-1
a
⊆
G
card
⋃
A
∖
B
61
56
60
eqsstrd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
⋃
suc
F
-1
a
⊆
G
card
⋃
A
∖
B
62
simprlr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
card
⋃
A
∖
B
⊆
y
63
61
62
sstrd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
⋃
suc
F
-1
a
⊆
y
64
53
27
eqeltrrd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
⋃
suc
F
-1
a
∈
y
65
64
snssd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
⋃
suc
F
-1
a
⊆
y
66
63
65
unssd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
⊆
y
67
1
2
3
ttukeylem2
⊢
φ
∧
y
∈
A
∧
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
⊆
y
→
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
68
21
28
66
67
syl12anc
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
69
68
iftrued
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
=
F
⋃
suc
F
-1
a
70
55
69
eleqtrrd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
∈
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
71
45
70
sselid
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
∈
G
⋃
suc
F
-1
a
∪
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
72
1
2
3
4
ttukeylem3
⊢
φ
∧
suc
F
-1
a
∈
On
→
G
suc
F
-1
a
=
if
suc
F
-1
a
=
⋃
suc
F
-1
a
if
suc
F
-1
a
=
∅
B
⋃
G
suc
F
-1
a
G
⋃
suc
F
-1
a
∪
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
73
38
72
syldan
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
suc
F
-1
a
=
if
suc
F
-1
a
=
⋃
suc
F
-1
a
if
suc
F
-1
a
=
∅
B
⋃
G
suc
F
-1
a
G
⋃
suc
F
-1
a
∪
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
74
sucidg
⊢
F
-1
a
∈
card
⋃
A
∖
B
→
F
-1
a
∈
suc
F
-1
a
75
34
74
syl
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
F
-1
a
∈
suc
F
-1
a
76
ordirr
⊢
Ord
F
-1
a
→
¬
F
-1
a
∈
F
-1
a
77
36
46
76
3syl
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
¬
F
-1
a
∈
F
-1
a
78
nelne1
⊢
F
-1
a
∈
suc
F
-1
a
∧
¬
F
-1
a
∈
F
-1
a
→
suc
F
-1
a
≠
F
-1
a
79
75
77
78
syl2anc
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
suc
F
-1
a
≠
F
-1
a
80
79
48
neeqtrrd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
suc
F
-1
a
≠
⋃
suc
F
-1
a
81
80
neneqd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
¬
suc
F
-1
a
=
⋃
suc
F
-1
a
82
81
iffalsed
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
if
suc
F
-1
a
=
⋃
suc
F
-1
a
if
suc
F
-1
a
=
∅
B
⋃
G
suc
F
-1
a
G
⋃
suc
F
-1
a
∪
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
=
G
⋃
suc
F
-1
a
∪
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
83
73
82
eqtrd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
G
suc
F
-1
a
=
G
⋃
suc
F
-1
a
∪
if
G
⋃
suc
F
-1
a
∪
F
⋃
suc
F
-1
a
∈
A
F
⋃
suc
F
-1
a
∅
84
71
83
eleqtrrd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
∈
G
suc
F
-1
a
85
44
84
sseldd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
∧
a
∈
y
∖
B
→
a
∈
G
card
⋃
A
∖
B
86
85
expr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
→
a
∈
y
∖
B
→
a
∈
G
card
⋃
A
∖
B
87
86
ssrdv
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
→
y
∖
B
⊆
G
card
⋃
A
∖
B
88
16
adantr
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
→
B
⊆
G
card
⋃
A
∖
B
89
87
88
unssd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
→
y
∖
B
∪
B
⊆
G
card
⋃
A
∖
B
90
20
89
sstrid
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
→
y
⊆
G
card
⋃
A
∖
B
91
17
90
eqssd
⊢
φ
∧
y
∈
A
∧
G
card
⋃
A
∖
B
⊆
y
→
G
card
⋃
A
∖
B
=
y
92
91
expr
⊢
φ
∧
y
∈
A
→
G
card
⋃
A
∖
B
⊆
y
→
G
card
⋃
A
∖
B
=
y
93
npss
⊢
¬
G
card
⋃
A
∖
B
⊂
y
↔
G
card
⋃
A
∖
B
⊆
y
→
G
card
⋃
A
∖
B
=
y
94
92
93
sylibr
⊢
φ
∧
y
∈
A
→
¬
G
card
⋃
A
∖
B
⊂
y
95
94
ralrimiva
⊢
φ
→
∀
y
∈
A
¬
G
card
⋃
A
∖
B
⊂
y
96
sseq2
⊢
x
=
G
card
⋃
A
∖
B
→
B
⊆
x
↔
B
⊆
G
card
⋃
A
∖
B
97
psseq1
⊢
x
=
G
card
⋃
A
∖
B
→
x
⊂
y
↔
G
card
⋃
A
∖
B
⊂
y
98
97
notbid
⊢
x
=
G
card
⋃
A
∖
B
→
¬
x
⊂
y
↔
¬
G
card
⋃
A
∖
B
⊂
y
99
98
ralbidv
⊢
x
=
G
card
⋃
A
∖
B
→
∀
y
∈
A
¬
x
⊂
y
↔
∀
y
∈
A
¬
G
card
⋃
A
∖
B
⊂
y
100
96
99
anbi12d
⊢
x
=
G
card
⋃
A
∖
B
→
B
⊆
x
∧
∀
y
∈
A
¬
x
⊂
y
↔
B
⊆
G
card
⋃
A
∖
B
∧
∀
y
∈
A
¬
G
card
⋃
A
∖
B
⊂
y
101
100
rspcev
⊢
G
card
⋃
A
∖
B
∈
A
∧
B
⊆
G
card
⋃
A
∖
B
∧
∀
y
∈
A
¬
G
card
⋃
A
∖
B
⊂
y
→
∃
x
∈
A
B
⊆
x
∧
∀
y
∈
A
¬
x
⊂
y
102
8
16
95
101
syl12anc
⊢
φ
→
∃
x
∈
A
B
⊆
x
∧
∀
y
∈
A
¬
x
⊂
y