| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ttukeylem.1 |
|
| 2 |
|
ttukeylem.2 |
|
| 3 |
|
ttukeylem.3 |
|
| 4 |
|
ttukeylem.4 |
|
| 5 |
|
cardon |
|
| 6 |
5
|
onsuci |
|
| 7 |
6
|
a1i |
|
| 8 |
|
onelon |
|
| 9 |
7 8
|
sylan |
|
| 10 |
|
eleq1 |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
eleq1d |
|
| 13 |
10 12
|
imbi12d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
eleq1 |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
eleq1d |
|
| 18 |
15 17
|
imbi12d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
r19.21v |
|
| 21 |
6
|
onordi |
|
| 22 |
21
|
a1i |
|
| 23 |
|
ordelss |
|
| 24 |
22 23
|
sylan |
|
| 25 |
24
|
sselda |
|
| 26 |
|
biimt |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
ralbidva |
|
| 29 |
6
|
onssi |
|
| 30 |
|
simprl |
|
| 31 |
29 30
|
sselid |
|
| 32 |
1 2 3 4
|
ttukeylem3 |
|
| 33 |
31 32
|
syldan |
|
| 34 |
2
|
ad3antrrr |
|
| 35 |
|
simpr |
|
| 36 |
35
|
elin2d |
|
| 37 |
35
|
elin1d |
|
| 38 |
37
|
elpwid |
|
| 39 |
4
|
tfr1 |
|
| 40 |
|
fnfun |
|
| 41 |
|
funiunfv |
|
| 42 |
39 40 41
|
mp2b |
|
| 43 |
38 42
|
sseqtrrdi |
|
| 44 |
|
dfss3 |
|
| 45 |
|
eliun |
|
| 46 |
45
|
ralbii |
|
| 47 |
44 46
|
bitri |
|
| 48 |
43 47
|
sylib |
|
| 49 |
|
fveq2 |
|
| 50 |
49
|
eleq2d |
|
| 51 |
50
|
ac6sfi |
|
| 52 |
36 48 51
|
syl2anc |
|
| 53 |
|
eleq1 |
|
| 54 |
|
simp-4l |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
eleq1d |
|
| 57 |
|
simplrr |
|
| 58 |
57
|
ad2antrr |
|
| 59 |
|
simprrl |
|
| 60 |
59
|
adantr |
|
| 61 |
|
frn |
|
| 62 |
60 61
|
syl |
|
| 63 |
31
|
ad3antrrr |
|
| 64 |
|
onss |
|
| 65 |
63 64
|
syl |
|
| 66 |
62 65
|
sstrd |
|
| 67 |
36
|
adantrr |
|
| 68 |
67
|
adantr |
|
| 69 |
|
ffn |
|
| 70 |
60 69
|
syl |
|
| 71 |
|
dffn4 |
|
| 72 |
70 71
|
sylib |
|
| 73 |
|
fofi |
|
| 74 |
68 72 73
|
syl2anc |
|
| 75 |
|
dm0rn0 |
|
| 76 |
59
|
fdmd |
|
| 77 |
76
|
eqeq1d |
|
| 78 |
75 77
|
bitr3id |
|
| 79 |
78
|
necon3bid |
|
| 80 |
79
|
biimpar |
|
| 81 |
|
ordunifi |
|
| 82 |
66 74 80 81
|
syl3anc |
|
| 83 |
62 82
|
sseldd |
|
| 84 |
56 58 83
|
rspcdva |
|
| 85 |
|
simp-4l |
|
| 86 |
31
|
ad3antrrr |
|
| 87 |
86 64
|
syl |
|
| 88 |
|
ffvelcdm |
|
| 89 |
88
|
adantl |
|
| 90 |
87 89
|
sseldd |
|
| 91 |
61
|
ad2antrl |
|
| 92 |
91 87
|
sstrd |
|
| 93 |
|
vex |
|
| 94 |
93
|
rnex |
|
| 95 |
94
|
ssonunii |
|
| 96 |
92 95
|
syl |
|
| 97 |
69
|
ad2antrl |
|
| 98 |
|
simprr |
|
| 99 |
|
fnfvelrn |
|
| 100 |
97 98 99
|
syl2anc |
|
| 101 |
|
elssuni |
|
| 102 |
100 101
|
syl |
|
| 103 |
1 2 3 4
|
ttukeylem5 |
|
| 104 |
85 90 96 102 103
|
syl13anc |
|
| 105 |
104
|
sseld |
|
| 106 |
105
|
anassrs |
|
| 107 |
106
|
ralimdva |
|
| 108 |
107
|
expimpd |
|
| 109 |
108
|
impr |
|
| 110 |
109
|
adantr |
|
| 111 |
|
dfss3 |
|
| 112 |
110 111
|
sylibr |
|
| 113 |
1 2 3
|
ttukeylem2 |
|
| 114 |
54 84 112 113
|
syl12anc |
|
| 115 |
|
0ss |
|
| 116 |
1 2 3
|
ttukeylem2 |
|
| 117 |
115 116
|
mpanr2 |
|
| 118 |
2 117
|
mpdan |
|
| 119 |
118
|
ad3antrrr |
|
| 120 |
53 114 119
|
pm2.61ne |
|
| 121 |
120
|
expr |
|
| 122 |
121
|
exlimdv |
|
| 123 |
52 122
|
mpd |
|
| 124 |
123
|
ex |
|
| 125 |
124
|
ssrdv |
|
| 126 |
1 2 3
|
ttukeylem1 |
|
| 127 |
126
|
ad2antrr |
|
| 128 |
125 127
|
mpbird |
|
| 129 |
128
|
adantr |
|
| 130 |
34 129
|
ifclda |
|
| 131 |
|
uneq2 |
|
| 132 |
131
|
eleq1d |
|
| 133 |
|
un0 |
|
| 134 |
|
uneq2 |
|
| 135 |
133 134
|
eqtr3id |
|
| 136 |
135
|
eleq1d |
|
| 137 |
|
simpr |
|
| 138 |
|
fveq2 |
|
| 139 |
138
|
eleq1d |
|
| 140 |
|
simplrr |
|
| 141 |
|
vuniex |
|
| 142 |
141
|
sucid |
|
| 143 |
|
eloni |
|
| 144 |
|
orduniorsuc |
|
| 145 |
31 143 144
|
3syl |
|
| 146 |
145
|
orcanai |
|
| 147 |
142 146
|
eleqtrrid |
|
| 148 |
139 140 147
|
rspcdva |
|
| 149 |
148
|
adantr |
|
| 150 |
132 136 137 149
|
ifbothda |
|
| 151 |
130 150
|
ifclda |
|
| 152 |
33 151
|
eqeltrd |
|
| 153 |
152
|
expr |
|
| 154 |
28 153
|
sylbird |
|
| 155 |
154
|
ex |
|
| 156 |
155
|
com23 |
|
| 157 |
156
|
a2i |
|
| 158 |
20 157
|
sylbi |
|
| 159 |
158
|
a1i |
|
| 160 |
14 19 159
|
tfis3 |
|
| 161 |
160
|
impd |
|
| 162 |
9 161
|
mpcom |
|