Metamath Proof Explorer


Theorem ulmcn

Description: A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015)

Ref Expression
Hypotheses ulmcn.z Z=M
ulmcn.m φM
ulmcn.f φF:ZScn
ulmcn.u φFuSG
Assertion ulmcn φG:Scn

Proof

Step Hyp Ref Expression
1 ulmcn.z Z=M
2 ulmcn.m φM
3 ulmcn.f φF:ZScn
4 ulmcn.u φFuSG
5 ulmcl FuSGG:S
6 4 5 syl φG:S
7 2 adantr φxSy+M
8 cncff x:Scnx:S
9 cnex V
10 cncfrss x:ScnS
11 ssexg SVSV
12 10 9 11 sylancl x:ScnSV
13 elmapg VSVxSx:S
14 9 12 13 sylancr x:ScnxSx:S
15 8 14 mpbird x:ScnxS
16 15 ssriv ScnS
17 fss F:ZScnScnSF:ZS
18 3 16 17 sylancl φF:ZS
19 18 adantr φxSy+F:ZS
20 eqidd φxSy+kZwSFkw=Fkw
21 eqidd φxSy+wSGw=Gw
22 4 adantr φxSy+FuSG
23 rphalfcl y+y2+
24 23 ad2antll φxSy+y2+
25 24 rphalfcld φxSy+y22+
26 1 7 19 20 21 22 25 ulmi φxSy+jZkjwSFkwGw<y22
27 1 r19.2uz jZkjwSFkwGw<y22kZwSFkwGw<y22
28 simplrl φxSy+kZxS
29 fveq2 w=xFkw=Fkx
30 fveq2 w=xGw=Gx
31 29 30 oveq12d w=xFkwGw=FkxGx
32 31 fveq2d w=xFkwGw=FkxGx
33 32 breq1d w=xFkwGw<y22FkxGx<y22
34 33 rspcv xSwSFkwGw<y22FkxGx<y22
35 28 34 syl φxSy+kZwSFkwGw<y22FkxGx<y22
36 3 adantr φxSy+F:ZScn
37 36 ffvelcdmda φxSy+kZFk:Scn
38 24 adantr φxSy+kZy2+
39 cncfi Fk:ScnxSy2+z+wSwx<zFkwFkx<y2
40 37 28 38 39 syl3anc φxSy+kZz+wSwx<zFkwFkx<y2
41 40 ad2antrr φxSy+kZwSFkwGw<y22FkxGx<y22z+wSwx<zFkwFkx<y2
42 r19.26 wSFkwGw<y22wx<zFkwFkx<y2wSFkwGw<y22wSwx<zFkwFkx<y2
43 19 ad2antrr φxSy+kZwSF:ZS
44 simplr φxSy+kZwSkZ
45 43 44 ffvelcdmd φxSy+kZwSFkS
46 elmapi FkSFk:S
47 45 46 syl φxSy+kZwSFk:S
48 28 adantr φxSy+kZwSxS
49 47 48 ffvelcdmd φxSy+kZwSFkx
50 6 ad3antrrr φxSy+kZwSG:S
51 50 48 ffvelcdmd φxSy+kZwSGx
52 49 51 subcld φxSy+kZwSFkxGx
53 52 abscld φxSy+kZwSFkxGx
54 ffvelcdm Fk:SwSFkw
55 47 54 sylancom φxSy+kZwSFkw
56 ffvelcdm G:SwSGw
57 50 56 sylancom φxSy+kZwSGw
58 55 57 subcld φxSy+kZwSFkwGw
59 58 abscld φxSy+kZwSFkwGw
60 38 adantr φxSy+kZwSy2+
61 60 rphalfcld φxSy+kZwSy22+
62 61 rpred φxSy+kZwSy22
63 lt2add FkxGxFkwGwy22y22FkxGx<y22FkwGw<y22FkxGx+FkwGw<y22+y22
64 53 59 62 62 63 syl22anc φxSy+kZwSFkxGx<y22FkwGw<y22FkxGx+FkwGw<y22+y22
65 60 rpred φxSy+kZwSy2
66 65 recnd φxSy+kZwSy2
67 66 2halvesd φxSy+kZwSy22+y22=y2
68 67 breq2d φxSy+kZwSFkxGx+FkwGw<y22+y22FkxGx+FkwGw<y2
69 53 59 readdcld φxSy+kZwSFkxGx+FkwGw
70 55 49 subcld φxSy+kZwSFkwFkx
71 70 abscld φxSy+kZwSFkwFkx
72 lt2add FkxGx+FkwGwFkwFkxy2y2FkxGx+FkwGw<y2FkwFkx<y2FkxGx+FkwGw+FkwFkx<y2+y2
73 69 71 65 65 72 syl22anc φxSy+kZwSFkxGx+FkwGw<y2FkwFkx<y2FkxGx+FkwGw+FkwFkx<y2+y2
74 rpre y+y
75 74 ad2antll φxSy+y
76 75 ad2antrr φxSy+kZwSy
77 76 recnd φxSy+kZwSy
78 77 2halvesd φxSy+kZwSy2+y2=y
79 78 breq2d φxSy+kZwSFkxGx+FkwGw+FkwFkx<y2+y2FkxGx+FkwGw+FkwFkx<y
80 57 51 subcld φxSy+kZwSGwGx
81 80 abscld φxSy+kZwSGwGx
82 57 49 subcld φxSy+kZwSGwFkx
83 82 abscld φxSy+kZwSGwFkx
84 53 83 readdcld φxSy+kZwSFkxGx+GwFkx
85 69 71 readdcld φxSy+kZwSFkxGx+FkwGw+FkwFkx
86 57 51 49 abs3difd φxSy+kZwSGwGxGwFkx+FkxGx
87 83 recnd φxSy+kZwSGwFkx
88 53 recnd φxSy+kZwSFkxGx
89 87 88 addcomd φxSy+kZwSGwFkx+FkxGx=FkxGx+GwFkx
90 86 89 breqtrd φxSy+kZwSGwGxFkxGx+GwFkx
91 59 71 readdcld φxSy+kZwSFkwGw+FkwFkx
92 57 49 55 abs3difd φxSy+kZwSGwFkxGwFkw+FkwFkx
93 57 55 abssubd φxSy+kZwSGwFkw=FkwGw
94 93 oveq1d φxSy+kZwSGwFkw+FkwFkx=FkwGw+FkwFkx
95 92 94 breqtrd φxSy+kZwSGwFkxFkwGw+FkwFkx
96 83 91 53 95 leadd2dd φxSy+kZwSFkxGx+GwFkxFkxGx+FkwGw+FkwFkx
97 59 recnd φxSy+kZwSFkwGw
98 71 recnd φxSy+kZwSFkwFkx
99 88 97 98 addassd φxSy+kZwSFkxGx+FkwGw+FkwFkx=FkxGx+FkwGw+FkwFkx
100 96 99 breqtrrd φxSy+kZwSFkxGx+GwFkxFkxGx+FkwGw+FkwFkx
101 81 84 85 90 100 letrd φxSy+kZwSGwGxFkxGx+FkwGw+FkwFkx
102 lelttr GwGxFkxGx+FkwGw+FkwFkxyGwGxFkxGx+FkwGw+FkwFkxFkxGx+FkwGw+FkwFkx<yGwGx<y
103 81 85 76 102 syl3anc φxSy+kZwSGwGxFkxGx+FkwGw+FkwFkxFkxGx+FkwGw+FkwFkx<yGwGx<y
104 101 103 mpand φxSy+kZwSFkxGx+FkwGw+FkwFkx<yGwGx<y
105 79 104 sylbid φxSy+kZwSFkxGx+FkwGw+FkwFkx<y2+y2GwGx<y
106 73 105 syld φxSy+kZwSFkxGx+FkwGw<y2FkwFkx<y2GwGx<y
107 106 expd φxSy+kZwSFkxGx+FkwGw<y2FkwFkx<y2GwGx<y
108 68 107 sylbid φxSy+kZwSFkxGx+FkwGw<y22+y22FkwFkx<y2GwGx<y
109 64 108 syld φxSy+kZwSFkxGx<y22FkwGw<y22FkwFkx<y2GwGx<y
110 109 expdimp φxSy+kZwSFkxGx<y22FkwGw<y22FkwFkx<y2GwGx<y
111 110 an32s φxSy+kZFkxGx<y22wSFkwGw<y22FkwFkx<y2GwGx<y
112 111 imp φxSy+kZFkxGx<y22wSFkwGw<y22FkwFkx<y2GwGx<y
113 112 imim2d φxSy+kZFkxGx<y22wSFkwGw<y22wx<zFkwFkx<y2wx<zGwGx<y
114 113 expimpd φxSy+kZFkxGx<y22wSFkwGw<y22wx<zFkwFkx<y2wx<zGwGx<y
115 114 ralimdva φxSy+kZFkxGx<y22wSFkwGw<y22wx<zFkwFkx<y2wSwx<zGwGx<y
116 42 115 biimtrrid φxSy+kZFkxGx<y22wSFkwGw<y22wSwx<zFkwFkx<y2wSwx<zGwGx<y
117 116 expdimp φxSy+kZFkxGx<y22wSFkwGw<y22wSwx<zFkwFkx<y2wSwx<zGwGx<y
118 117 an32s φxSy+kZwSFkwGw<y22FkxGx<y22wSwx<zFkwFkx<y2wSwx<zGwGx<y
119 118 reximdv φxSy+kZwSFkwGw<y22FkxGx<y22z+wSwx<zFkwFkx<y2z+wSwx<zGwGx<y
120 41 119 mpd φxSy+kZwSFkwGw<y22FkxGx<y22z+wSwx<zGwGx<y
121 120 exp31 φxSy+kZwSFkwGw<y22FkxGx<y22z+wSwx<zGwGx<y
122 35 121 mpdd φxSy+kZwSFkwGw<y22z+wSwx<zGwGx<y
123 122 rexlimdva φxSy+kZwSFkwGw<y22z+wSwx<zGwGx<y
124 27 123 syl5 φxSy+jZkjwSFkwGw<y22z+wSwx<zGwGx<y
125 26 124 mpd φxSy+z+wSwx<zGwGx<y
126 125 ralrimivva φxSy+z+wSwx<zGwGx<y
127 uzid MMM
128 2 127 syl φMM
129 128 1 eleqtrrdi φMZ
130 3 129 ffvelcdmd φFM:Scn
131 cncfrss FM:ScnS
132 130 131 syl φS
133 ssid
134 elcncf2 SG:ScnG:SxSy+z+wSwx<zGwGx<y
135 132 133 134 sylancl φG:ScnG:SxSy+z+wSwx<zGwGx<y
136 6 126 135 mpbir2and φG:Scn