Metamath Proof Explorer


Theorem unbdqndv2lem2

Description: Lemma for unbdqndv2 . (Contributed by Asger C. Ipsen, 12-May-2021)

Ref Expression
Hypotheses unbdqndv2lem2.g G=zXAFzFAzA
unbdqndv2lem2.w W=ifBVUFUFAUV
unbdqndv2lem2.x φX
unbdqndv2lem2.f φF:X
unbdqndv2lem2.a φAX
unbdqndv2lem2.b φB+
unbdqndv2lem2.d φD+
unbdqndv2lem2.u φUX
unbdqndv2lem2.v φVX
unbdqndv2lem2.1 φUV
unbdqndv2lem2.2 φUA
unbdqndv2lem2.3 φAV
unbdqndv2lem2.4 φVU<D
unbdqndv2lem2.5 φ2BFVFUVU
Assertion unbdqndv2lem2 φWXAWA<DBGW

Proof

Step Hyp Ref Expression
1 unbdqndv2lem2.g G=zXAFzFAzA
2 unbdqndv2lem2.w W=ifBVUFUFAUV
3 unbdqndv2lem2.x φX
4 unbdqndv2lem2.f φF:X
5 unbdqndv2lem2.a φAX
6 unbdqndv2lem2.b φB+
7 unbdqndv2lem2.d φD+
8 unbdqndv2lem2.u φUX
9 unbdqndv2lem2.v φVX
10 unbdqndv2lem2.1 φUV
11 unbdqndv2lem2.2 φUA
12 unbdqndv2lem2.3 φAV
13 unbdqndv2lem2.4 φVU<D
14 unbdqndv2lem2.5 φ2BFVFUVU
15 2 a1i φBVUFUFAW=ifBVUFUFAUV
16 iftrue BVUFUFAifBVUFUFAUV=U
17 16 adantl φBVUFUFAifBVUFUFAUV=U
18 15 17 eqtrd φBVUFUFAW=U
19 8 adantr φBVUFUFAUX
20 simplr φBVUFUFAU=ABVUFUFA
21 fveq2 U=AFU=FA
22 21 eqcomd U=AFA=FU
23 22 oveq2d U=AFUFA=FUFU
24 23 fveq2d U=AFUFA=FUFU
25 24 adantl φU=AFUFA=FUFU
26 4 8 ffvelcdmd φFU
27 26 subidd φFUFU=0
28 27 fveq2d φFUFU=0
29 28 adantr φU=AFUFU=0
30 abs0 0=0
31 30 a1i φU=A0=0
32 29 31 eqtrd φU=AFUFU=0
33 25 32 eqtrd φU=AFUFA=0
34 33 adantlr φBVUFUFAU=AFUFA=0
35 20 34 breqtrd φBVUFUFAU=ABVU0
36 6 rpred φB
37 3 9 sseldd φV
38 3 8 sseldd φU
39 37 38 resubcld φVU
40 6 rpgt0d φ0<B
41 3 5 sseldd φA
42 38 41 37 11 12 letrd φUV
43 10 necomd φVU
44 38 37 42 43 leneltd φU<V
45 38 37 posdifd φU<V0<VU
46 44 45 mpbid φ0<VU
47 36 39 40 46 mulgt0d φ0<BVU
48 0red φ0
49 36 39 remulcld φBVU
50 48 49 ltnled φ0<BVU¬BVU0
51 47 50 mpbid φ¬BVU0
52 51 adantr φBVUFUFA¬BVU0
53 52 adantr φBVUFUFAU=A¬BVU0
54 35 53 pm2.65da φBVUFUFA¬U=A
55 54 neqned φBVUFUFAUA
56 19 55 jca φBVUFUFAUXUA
57 eldifsn UXAUXUA
58 56 57 sylibr φBVUFUFAUXA
59 18 58 eqeltrd φBVUFUFAWXA
60 18 oveq1d φBVUFUFAWA=UA
61 60 fveq2d φBVUFUFAWA=UA
62 38 41 11 abssuble0d φUA=AU
63 62 adantr φBVUFUFAUA=AU
64 61 63 eqtrd φBVUFUFAWA=AU
65 41 38 resubcld φAU
66 7 rpred φD
67 41 37 38 12 lesub1dd φAUVU
68 65 39 66 67 13 lelttrd φAU<D
69 68 adantr φBVUFUFAAU<D
70 64 69 eqbrtrd φBVUFUFAWA<D
71 36 65 remulcld φBAU
72 71 adantr φBVUFUFABAU
73 49 adantr φBVUFUFABVU
74 4 5 ffvelcdmd φFA
75 26 74 subcld φFUFA
76 75 abscld φFUFA
77 76 adantr φBVUFUFAFUFA
78 48 36 40 ltled φ0B
79 65 39 36 78 67 lemul2ad φBAUBVU
80 79 adantr φBVUFUFABAUBVU
81 simpr φBVUFUFABVUFUFA
82 72 73 77 80 81 letrd φBVUFUFABAUFUFA
83 36 adantr φBVUFUFAB
84 65 adantr φBVUFUFAAU
85 11 adantr φBVUFUFAUA
86 55 necomd φBVUFUFAAU
87 85 86 jca φBVUFUFAUAAU
88 38 41 ltlend φU<AUAAU
89 88 adantr φBVUFUFAU<AUAAU
90 87 89 mpbird φBVUFUFAU<A
91 38 41 posdifd φU<A0<AU
92 91 adantr φBVUFUFAU<A0<AU
93 90 92 mpbid φBVUFUFA0<AU
94 84 93 jca φBVUFUFAAU0<AU
95 elrp AU+AU0<AU
96 94 95 sylibr φBVUFUFAAU+
97 83 77 96 lemuldivd φBVUFUFABAUFUFABFUFAAU
98 82 97 mpbid φBVUFUFABFUFAAU
99 18 fveq2d φBVUFUFAGW=GU
100 fveq2 z=UFz=FU
101 100 oveq1d z=UFzFA=FUFA
102 oveq1 z=UzA=UA
103 101 102 oveq12d z=UFzFAzA=FUFAUA
104 ovexd φBVUFUFAFUFAUAV
105 1 103 58 104 fvmptd3 φBVUFUFAGU=FUFAUA
106 99 105 eqtrd φBVUFUFAGW=FUFAUA
107 106 fveq2d φBVUFUFAGW=FUFAUA
108 75 adantr φBVUFUFAFUFA
109 38 recnd φU
110 41 recnd φA
111 109 110 subcld φUA
112 111 adantr φBVUFUFAUA
113 109 adantr φBVUFUFAU
114 110 adantr φBVUFUFAA
115 113 114 55 subne0d φBVUFUFAUA0
116 108 112 115 absdivd φBVUFUFAFUFAUA=FUFAUA
117 63 oveq2d φBVUFUFAFUFAUA=FUFAAU
118 116 117 eqtrd φBVUFUFAFUFAUA=FUFAAU
119 107 118 eqtrd φBVUFUFAGW=FUFAAU
120 119 eqcomd φBVUFUFAFUFAAU=GW
121 98 120 breqtrd φBVUFUFABGW
122 70 121 jca φBVUFUFAWA<DBGW
123 59 122 jca φBVUFUFAWXAWA<DBGW
124 2 a1i φ¬BVUFUFAW=ifBVUFUFAUV
125 simpr φ¬BVUFUFA¬BVUFUFA
126 125 iffalsed φ¬BVUFUFAifBVUFUFAUV=V
127 124 126 eqtrd φ¬BVUFUFAW=V
128 9 adantr φ¬BVUFUFAVX
129 38 37 42 abssubge0d φVU=VU
130 129 oveq2d φBVU=BVU
131 130 breq1d φBVUFUFABVUFUFA
132 131 adantr φ¬BVUFUFABVUFUFABVUFUFA
133 125 132 mtbird φ¬BVUFUFA¬BVUFUFA
134 4 9 ffvelcdmd φFV
135 39 recnd φVU
136 48 46 gtned φVU0
137 134 26 subcld φFVFU
138 137 135 136 absdivd φFVFUVU=FVFUVU
139 129 oveq2d φFVFUVU=FVFUVU
140 138 139 eqtrd φFVFUVU=FVFUVU
141 140 eqcomd φFVFUVU=FVFUVU
142 14 141 breqtrd φ2BFVFUVU
143 134 26 74 135 6 136 142 unbdqndv2lem1 φBVUFVFABVUFUFA
144 143 adantr φ¬BVUFUFABVUFVFABVUFUFA
145 orel2 ¬BVUFUFABVUFVFABVUFUFABVUFVFA
146 133 144 145 sylc φ¬BVUFUFABVUFVFA
147 146 adantr φ¬BVUFUFAV=ABVUFVFA
148 fveq2 V=AFV=FA
149 148 oveq1d V=AFVFA=FAFA
150 149 adantl φV=AFVFA=FAFA
151 74 subidd φFAFA=0
152 151 adantr φV=AFAFA=0
153 150 152 eqtrd φV=AFVFA=0
154 153 fveq2d φV=AFVFA=0
155 30 a1i φV=A0=0
156 154 155 eqtrd φV=AFVFA=0
157 156 adantlr φ¬BVUFUFAV=AFVFA=0
158 147 157 breqtrd φ¬BVUFUFAV=ABVU0
159 130 breq1d φBVU0BVU0
160 51 159 mtbird φ¬BVU0
161 160 adantr φ¬BVUFUFA¬BVU0
162 161 adantr φ¬BVUFUFAV=A¬BVU0
163 158 162 pm2.65da φ¬BVUFUFA¬V=A
164 163 neqned φ¬BVUFUFAVA
165 128 164 jca φ¬BVUFUFAVXVA
166 eldifsn VXAVXVA
167 165 166 sylibr φ¬BVUFUFAVXA
168 127 167 eqeltrd φ¬BVUFUFAWXA
169 127 oveq1d φ¬BVUFUFAWA=VA
170 169 fveq2d φ¬BVUFUFAWA=VA
171 41 37 12 abssubge0d φVA=VA
172 171 adantr φ¬BVUFUFAVA=VA
173 170 172 eqtrd φ¬BVUFUFAWA=VA
174 37 41 resubcld φVA
175 38 41 37 11 lesub2dd φVAVU
176 174 39 66 175 13 lelttrd φVA<D
177 176 adantr φ¬BVUFUFAVA<D
178 173 177 eqbrtrd φ¬BVUFUFAWA<D
179 171 174 eqeltrd φVA
180 36 179 remulcld φBVA
181 180 adantr φ¬BVUFUFABVA
182 130 49 eqeltrd φBVU
183 182 adantr φ¬BVUFUFABVU
184 134 74 subcld φFVFA
185 184 abscld φFVFA
186 185 adantr φ¬BVUFUFAFVFA
187 129 39 eqeltrd φVU
188 175 171 129 3brtr4d φVAVU
189 179 187 36 78 188 lemul2ad φBVABVU
190 189 adantr φ¬BVUFUFABVABVU
191 181 183 186 190 146 letrd φ¬BVUFUFABVAFVFA
192 36 adantr φ¬BVUFUFAB
193 174 recnd φVA
194 193 adantr φ¬BVUFUFAVA
195 37 recnd φV
196 195 adantr φ¬BVUFUFAV
197 110 adantr φ¬BVUFUFAA
198 196 197 164 subne0d φ¬BVUFUFAVA0
199 194 198 absrpcld φ¬BVUFUFAVA+
200 192 186 199 lemuldivd φ¬BVUFUFABVAFVFABFVFAVA
201 191 200 mpbid φ¬BVUFUFABFVFAVA
202 127 fveq2d φ¬BVUFUFAGW=GV
203 fveq2 z=VFz=FV
204 203 oveq1d z=VFzFA=FVFA
205 oveq1 z=VzA=VA
206 204 205 oveq12d z=VFzFAzA=FVFAVA
207 ovexd φ¬BVUFUFAFVFAVAV
208 1 206 167 207 fvmptd3 φ¬BVUFUFAGV=FVFAVA
209 202 208 eqtrd φ¬BVUFUFAGW=FVFAVA
210 209 fveq2d φ¬BVUFUFAGW=FVFAVA
211 184 adantr φ¬BVUFUFAFVFA
212 211 194 198 absdivd φ¬BVUFUFAFVFAVA=FVFAVA
213 210 212 eqtrd φ¬BVUFUFAGW=FVFAVA
214 213 eqcomd φ¬BVUFUFAFVFAVA=GW
215 201 214 breqtrd φ¬BVUFUFABGW
216 178 215 jca φ¬BVUFUFAWA<DBGW
217 168 216 jca φ¬BVUFUFAWXAWA<DBGW
218 123 217 pm2.61dan φWXAWA<DBGW