Metamath Proof Explorer


Theorem unxpwdom2

Description: Lemma for unxpwdom . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion unxpwdom2 A×ABCA*BAC

Proof

Step Hyp Ref Expression
1 ensym A×ABCBCA×A
2 bren BCA×Aff:BC1-1 ontoA×A
3 ssdif0 A1stA×AfBA1stA×AfB=
4 dmxpid domA×A=A
5 f1ofo f:BC1-1 ontoA×Af:BContoA×A
6 forn f:BContoA×Aranf=A×A
7 5 6 syl f:BC1-1 ontoA×Aranf=A×A
8 vex fV
9 8 rnex ranfV
10 7 9 eqeltrrdi f:BC1-1 ontoA×AA×AV
11 10 dmexd f:BC1-1 ontoA×AdomA×AV
12 4 11 eqeltrrid f:BC1-1 ontoA×AAV
13 imassrn 1stA×AfBran1stA×Af
14 f1stres 1stA×A:A×AA
15 f1of f:BC1-1 ontoA×Af:BCA×A
16 fco 1stA×A:A×AAf:BCA×A1stA×Af:BCA
17 14 15 16 sylancr f:BC1-1 ontoA×A1stA×Af:BCA
18 17 frnd f:BC1-1 ontoA×Aran1stA×AfA
19 13 18 sstrid f:BC1-1 ontoA×A1stA×AfBA
20 12 19 ssexd f:BC1-1 ontoA×A1stA×AfBV
21 20 adantr f:BC1-1 ontoA×AA1stA×AfB1stA×AfBV
22 simpr f:BC1-1 ontoA×AA1stA×AfBA1stA×AfB
23 ssdomg 1stA×AfBVA1stA×AfBA1stA×AfB
24 21 22 23 sylc f:BC1-1 ontoA×AA1stA×AfBA1stA×AfB
25 domwdom A1stA×AfBA*1stA×AfB
26 24 25 syl f:BC1-1 ontoA×AA1stA×AfBA*1stA×AfB
27 17 ffund f:BC1-1 ontoA×AFun1stA×Af
28 ssun1 BBC
29 f1odm f:BC1-1 ontoA×Adomf=BC
30 8 dmex domfV
31 29 30 eqeltrrdi f:BC1-1 ontoA×ABCV
32 ssexg BBCBCVBV
33 28 31 32 sylancr f:BC1-1 ontoA×ABV
34 wdomima2g Fun1stA×AfBV1stA×AfBV1stA×AfB*B
35 27 33 20 34 syl3anc f:BC1-1 ontoA×A1stA×AfB*B
36 35 adantr f:BC1-1 ontoA×AA1stA×AfB1stA×AfB*B
37 wdomtr A*1stA×AfB1stA×AfB*BA*B
38 26 36 37 syl2anc f:BC1-1 ontoA×AA1stA×AfBA*B
39 38 orcd f:BC1-1 ontoA×AA1stA×AfBA*BAC
40 39 ex f:BC1-1 ontoA×AA1stA×AfBA*BAC
41 3 40 biimtrrid f:BC1-1 ontoA×AA1stA×AfB=A*BAC
42 n0 A1stA×AfBxxA1stA×AfB
43 ssun2 CBC
44 ssexg CBCBCVCV
45 43 31 44 sylancr f:BC1-1 ontoA×ACV
46 45 adantr f:BC1-1 ontoA×AxA1stA×AfBCV
47 f1ofn f:BC1-1 ontoA×AfFnBC
48 elpreima fFnBCyf-1x×AyBCfyx×A
49 47 48 syl f:BC1-1 ontoA×Ayf-1x×AyBCfyx×A
50 49 adantr f:BC1-1 ontoA×AxA1stA×AfByf-1x×AyBCfyx×A
51 elun yBCyByC
52 df-or yByC¬yByC
53 51 52 bitri yBC¬yByC
54 eldifn xA1stA×AfB¬x1stA×AfB
55 54 ad2antlr f:BC1-1 ontoA×AxA1stA×AfBfyx×A¬x1stA×AfB
56 15 ad2antrr f:BC1-1 ontoA×AxA1stA×AfBfyx×AyBf:BCA×A
57 simprr f:BC1-1 ontoA×AxA1stA×AfBfyx×AyByB
58 28 57 sselid f:BC1-1 ontoA×AxA1stA×AfBfyx×AyByBC
59 fvco3 f:BCA×AyBC1stA×Afy=1stA×Afy
60 56 58 59 syl2anc f:BC1-1 ontoA×AxA1stA×AfBfyx×AyB1stA×Afy=1stA×Afy
61 eldifi xA1stA×AfBxA
62 61 adantl f:BC1-1 ontoA×AxA1stA×AfBxA
63 62 snssd f:BC1-1 ontoA×AxA1stA×AfBxA
64 xpss1 xAx×AA×A
65 63 64 syl f:BC1-1 ontoA×AxA1stA×AfBx×AA×A
66 65 adantr f:BC1-1 ontoA×AxA1stA×AfBfyx×AyBx×AA×A
67 simprl f:BC1-1 ontoA×AxA1stA×AfBfyx×AyBfyx×A
68 66 67 sseldd f:BC1-1 ontoA×AxA1stA×AfBfyx×AyBfyA×A
69 68 fvresd f:BC1-1 ontoA×AxA1stA×AfBfyx×AyB1stA×Afy=1stfy
70 xp1st fyx×A1stfyx
71 67 70 syl f:BC1-1 ontoA×AxA1stA×AfBfyx×AyB1stfyx
72 69 71 eqeltrd f:BC1-1 ontoA×AxA1stA×AfBfyx×AyB1stA×Afyx
73 elsni 1stA×Afyx1stA×Afy=x
74 72 73 syl f:BC1-1 ontoA×AxA1stA×AfBfyx×AyB1stA×Afy=x
75 60 74 eqtrd f:BC1-1 ontoA×AxA1stA×AfBfyx×AyB1stA×Afy=x
76 17 ffnd f:BC1-1 ontoA×A1stA×AfFnBC
77 76 ad2antrr f:BC1-1 ontoA×AxA1stA×AfBfyx×AyB1stA×AfFnBC
78 28 a1i f:BC1-1 ontoA×AxA1stA×AfBfyx×AyBBBC
79 fnfvima 1stA×AfFnBCBBCyB1stA×Afy1stA×AfB
80 77 78 57 79 syl3anc f:BC1-1 ontoA×AxA1stA×AfBfyx×AyB1stA×Afy1stA×AfB
81 75 80 eqeltrrd f:BC1-1 ontoA×AxA1stA×AfBfyx×AyBx1stA×AfB
82 81 expr f:BC1-1 ontoA×AxA1stA×AfBfyx×AyBx1stA×AfB
83 55 82 mtod f:BC1-1 ontoA×AxA1stA×AfBfyx×A¬yB
84 83 ex f:BC1-1 ontoA×AxA1stA×AfBfyx×A¬yB
85 84 imim1d f:BC1-1 ontoA×AxA1stA×AfB¬yByCfyx×AyC
86 53 85 biimtrid f:BC1-1 ontoA×AxA1stA×AfByBCfyx×AyC
87 86 impd f:BC1-1 ontoA×AxA1stA×AfByBCfyx×AyC
88 50 87 sylbid f:BC1-1 ontoA×AxA1stA×AfByf-1x×AyC
89 88 ssrdv f:BC1-1 ontoA×AxA1stA×AfBf-1x×AC
90 ssdomg CVf-1x×ACf-1x×AC
91 46 89 90 sylc f:BC1-1 ontoA×AxA1stA×AfBf-1x×AC
92 f1ocnv f:BC1-1 ontoA×Af-1:A×A1-1 ontoBC
93 f1of1 f-1:A×A1-1 ontoBCf-1:A×A1-1BC
94 92 93 syl f:BC1-1 ontoA×Af-1:A×A1-1BC
95 94 adantr f:BC1-1 ontoA×AxA1stA×AfBf-1:A×A1-1BC
96 31 adantr f:BC1-1 ontoA×AxA1stA×AfBBCV
97 vsnex xV
98 12 adantr f:BC1-1 ontoA×AxA1stA×AfBAV
99 xpexg xVAVx×AV
100 97 98 99 sylancr f:BC1-1 ontoA×AxA1stA×AfBx×AV
101 f1imaen2g f-1:A×A1-1BCBCVx×AA×Ax×AVf-1x×Ax×A
102 95 96 65 100 101 syl22anc f:BC1-1 ontoA×AxA1stA×AfBf-1x×Ax×A
103 vex xV
104 xpsnen2g xVAVx×AA
105 103 98 104 sylancr f:BC1-1 ontoA×AxA1stA×AfBx×AA
106 entr f-1x×Ax×Ax×AAf-1x×AA
107 102 105 106 syl2anc f:BC1-1 ontoA×AxA1stA×AfBf-1x×AA
108 domen1 f-1x×AAf-1x×ACAC
109 107 108 syl f:BC1-1 ontoA×AxA1stA×AfBf-1x×ACAC
110 91 109 mpbid f:BC1-1 ontoA×AxA1stA×AfBAC
111 110 olcd f:BC1-1 ontoA×AxA1stA×AfBA*BAC
112 111 ex f:BC1-1 ontoA×AxA1stA×AfBA*BAC
113 112 exlimdv f:BC1-1 ontoA×AxxA1stA×AfBA*BAC
114 42 113 biimtrid f:BC1-1 ontoA×AA1stA×AfBA*BAC
115 41 114 pm2.61dne f:BC1-1 ontoA×AA*BAC
116 115 exlimiv ff:BC1-1 ontoA×AA*BAC
117 2 116 sylbi BCA×AA*BAC
118 1 117 syl A×ABCA*BAC