| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ensym |  | 
						
							| 2 |  | bren |  | 
						
							| 3 |  | ssdif0 |  | 
						
							| 4 |  | dmxpid |  | 
						
							| 5 |  | f1ofo |  | 
						
							| 6 |  | forn |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 |  | vex |  | 
						
							| 9 | 8 | rnex |  | 
						
							| 10 | 7 9 | eqeltrrdi |  | 
						
							| 11 | 10 | dmexd |  | 
						
							| 12 | 4 11 | eqeltrrid |  | 
						
							| 13 |  | imassrn |  | 
						
							| 14 |  | f1stres |  | 
						
							| 15 |  | f1of |  | 
						
							| 16 |  | fco |  | 
						
							| 17 | 14 15 16 | sylancr |  | 
						
							| 18 | 17 | frnd |  | 
						
							| 19 | 13 18 | sstrid |  | 
						
							| 20 | 12 19 | ssexd |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 |  | ssdomg |  | 
						
							| 24 | 21 22 23 | sylc |  | 
						
							| 25 |  | domwdom |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 17 | ffund |  | 
						
							| 28 |  | ssun1 |  | 
						
							| 29 |  | f1odm |  | 
						
							| 30 | 8 | dmex |  | 
						
							| 31 | 29 30 | eqeltrrdi |  | 
						
							| 32 |  | ssexg |  | 
						
							| 33 | 28 31 32 | sylancr |  | 
						
							| 34 |  | wdomima2g |  | 
						
							| 35 | 27 33 20 34 | syl3anc |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | wdomtr |  | 
						
							| 38 | 26 36 37 | syl2anc |  | 
						
							| 39 | 38 | orcd |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 3 40 | biimtrrid |  | 
						
							| 42 |  | n0 |  | 
						
							| 43 |  | ssun2 |  | 
						
							| 44 |  | ssexg |  | 
						
							| 45 | 43 31 44 | sylancr |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 |  | f1ofn |  | 
						
							| 48 |  | elpreima |  | 
						
							| 49 | 47 48 | syl |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 |  | elun |  | 
						
							| 52 |  | df-or |  | 
						
							| 53 | 51 52 | bitri |  | 
						
							| 54 |  | eldifn |  | 
						
							| 55 | 54 | ad2antlr |  | 
						
							| 56 | 15 | ad2antrr |  | 
						
							| 57 |  | simprr |  | 
						
							| 58 | 28 57 | sselid |  | 
						
							| 59 |  | fvco3 |  | 
						
							| 60 | 56 58 59 | syl2anc |  | 
						
							| 61 |  | eldifi |  | 
						
							| 62 | 61 | adantl |  | 
						
							| 63 | 62 | snssd |  | 
						
							| 64 |  | xpss1 |  | 
						
							| 65 | 63 64 | syl |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 |  | simprl |  | 
						
							| 68 | 66 67 | sseldd |  | 
						
							| 69 | 68 | fvresd |  | 
						
							| 70 |  | xp1st |  | 
						
							| 71 | 67 70 | syl |  | 
						
							| 72 | 69 71 | eqeltrd |  | 
						
							| 73 |  | elsni |  | 
						
							| 74 | 72 73 | syl |  | 
						
							| 75 | 60 74 | eqtrd |  | 
						
							| 76 | 17 | ffnd |  | 
						
							| 77 | 76 | ad2antrr |  | 
						
							| 78 | 28 | a1i |  | 
						
							| 79 |  | fnfvima |  | 
						
							| 80 | 77 78 57 79 | syl3anc |  | 
						
							| 81 | 75 80 | eqeltrrd |  | 
						
							| 82 | 81 | expr |  | 
						
							| 83 | 55 82 | mtod |  | 
						
							| 84 | 83 | ex |  | 
						
							| 85 | 84 | imim1d |  | 
						
							| 86 | 53 85 | biimtrid |  | 
						
							| 87 | 86 | impd |  | 
						
							| 88 | 50 87 | sylbid |  | 
						
							| 89 | 88 | ssrdv |  | 
						
							| 90 |  | ssdomg |  | 
						
							| 91 | 46 89 90 | sylc |  | 
						
							| 92 |  | f1ocnv |  | 
						
							| 93 |  | f1of1 |  | 
						
							| 94 | 92 93 | syl |  | 
						
							| 95 | 94 | adantr |  | 
						
							| 96 | 31 | adantr |  | 
						
							| 97 |  | vsnex |  | 
						
							| 98 | 12 | adantr |  | 
						
							| 99 |  | xpexg |  | 
						
							| 100 | 97 98 99 | sylancr |  | 
						
							| 101 |  | f1imaen2g |  | 
						
							| 102 | 95 96 65 100 101 | syl22anc |  | 
						
							| 103 |  | vex |  | 
						
							| 104 |  | xpsnen2g |  | 
						
							| 105 | 103 98 104 | sylancr |  | 
						
							| 106 |  | entr |  | 
						
							| 107 | 102 105 106 | syl2anc |  | 
						
							| 108 |  | domen1 |  | 
						
							| 109 | 107 108 | syl |  | 
						
							| 110 | 91 109 | mpbid |  | 
						
							| 111 | 110 | olcd |  | 
						
							| 112 | 111 | ex |  | 
						
							| 113 | 112 | exlimdv |  | 
						
							| 114 | 42 113 | biimtrid |  | 
						
							| 115 | 41 114 | pm2.61dne |  | 
						
							| 116 | 115 | exlimiv |  | 
						
							| 117 | 2 116 | sylbi |  | 
						
							| 118 | 1 117 | syl |  |