Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Weak dominance
unxpwdom2
Next ⟩
unxpwdom
Metamath Proof Explorer
Ascii
Unicode
Theorem
unxpwdom2
Description:
Lemma for
unxpwdom
.
(Contributed by
Mario Carneiro
, 15-May-2015)
Ref
Expression
Assertion
unxpwdom2
⊢
A
×
A
≈
B
∪
C
→
A
≼
*
B
∨
A
≼
C
Proof
Step
Hyp
Ref
Expression
1
ensym
⊢
A
×
A
≈
B
∪
C
→
B
∪
C
≈
A
×
A
2
bren
⊢
B
∪
C
≈
A
×
A
↔
∃
f
f
:
B
∪
C
⟶
1-1 onto
A
×
A
3
ssdif0
⊢
A
⊆
1
st
↾
A
×
A
∘
f
B
↔
A
∖
1
st
↾
A
×
A
∘
f
B
=
∅
4
dmxpid
⊢
dom
A
×
A
=
A
5
f1ofo
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
f
:
B
∪
C
⟶
onto
A
×
A
6
forn
⊢
f
:
B
∪
C
⟶
onto
A
×
A
→
ran
f
=
A
×
A
7
5
6
syl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
ran
f
=
A
×
A
8
vex
⊢
f
∈
V
9
8
rnex
⊢
ran
f
∈
V
10
7
9
eqeltrrdi
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
A
×
A
∈
V
11
10
dmexd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
dom
A
×
A
∈
V
12
4
11
eqeltrrid
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
A
∈
V
13
imassrn
⊢
1
st
↾
A
×
A
∘
f
B
⊆
ran
1
st
↾
A
×
A
∘
f
14
f1stres
⊢
1
st
↾
A
×
A
:
A
×
A
⟶
A
15
f1of
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
f
:
B
∪
C
⟶
A
×
A
16
fco
⊢
1
st
↾
A
×
A
:
A
×
A
⟶
A
∧
f
:
B
∪
C
⟶
A
×
A
→
1
st
↾
A
×
A
∘
f
:
B
∪
C
⟶
A
17
14
15
16
sylancr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
1
st
↾
A
×
A
∘
f
:
B
∪
C
⟶
A
18
17
frnd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
ran
1
st
↾
A
×
A
∘
f
⊆
A
19
13
18
sstrid
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
1
st
↾
A
×
A
∘
f
B
⊆
A
20
12
19
ssexd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
1
st
↾
A
×
A
∘
f
B
∈
V
21
20
adantr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
A
⊆
1
st
↾
A
×
A
∘
f
B
→
1
st
↾
A
×
A
∘
f
B
∈
V
22
simpr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
A
⊆
1
st
↾
A
×
A
∘
f
B
→
A
⊆
1
st
↾
A
×
A
∘
f
B
23
ssdomg
⊢
1
st
↾
A
×
A
∘
f
B
∈
V
→
A
⊆
1
st
↾
A
×
A
∘
f
B
→
A
≼
1
st
↾
A
×
A
∘
f
B
24
21
22
23
sylc
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
A
⊆
1
st
↾
A
×
A
∘
f
B
→
A
≼
1
st
↾
A
×
A
∘
f
B
25
domwdom
⊢
A
≼
1
st
↾
A
×
A
∘
f
B
→
A
≼
*
1
st
↾
A
×
A
∘
f
B
26
24
25
syl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
A
⊆
1
st
↾
A
×
A
∘
f
B
→
A
≼
*
1
st
↾
A
×
A
∘
f
B
27
17
ffund
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
Fun
1
st
↾
A
×
A
∘
f
28
ssun1
⊢
B
⊆
B
∪
C
29
f1odm
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
dom
f
=
B
∪
C
30
8
dmex
⊢
dom
f
∈
V
31
29
30
eqeltrrdi
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
B
∪
C
∈
V
32
ssexg
⊢
B
⊆
B
∪
C
∧
B
∪
C
∈
V
→
B
∈
V
33
28
31
32
sylancr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
B
∈
V
34
wdomima2g
⊢
Fun
1
st
↾
A
×
A
∘
f
∧
B
∈
V
∧
1
st
↾
A
×
A
∘
f
B
∈
V
→
1
st
↾
A
×
A
∘
f
B
≼
*
B
35
27
33
20
34
syl3anc
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
1
st
↾
A
×
A
∘
f
B
≼
*
B
36
35
adantr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
A
⊆
1
st
↾
A
×
A
∘
f
B
→
1
st
↾
A
×
A
∘
f
B
≼
*
B
37
wdomtr
⊢
A
≼
*
1
st
↾
A
×
A
∘
f
B
∧
1
st
↾
A
×
A
∘
f
B
≼
*
B
→
A
≼
*
B
38
26
36
37
syl2anc
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
A
⊆
1
st
↾
A
×
A
∘
f
B
→
A
≼
*
B
39
38
orcd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
A
⊆
1
st
↾
A
×
A
∘
f
B
→
A
≼
*
B
∨
A
≼
C
40
39
ex
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
A
⊆
1
st
↾
A
×
A
∘
f
B
→
A
≼
*
B
∨
A
≼
C
41
3
40
biimtrrid
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
A
∖
1
st
↾
A
×
A
∘
f
B
=
∅
→
A
≼
*
B
∨
A
≼
C
42
n0
⊢
A
∖
1
st
↾
A
×
A
∘
f
B
≠
∅
↔
∃
x
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
43
ssun2
⊢
C
⊆
B
∪
C
44
ssexg
⊢
C
⊆
B
∪
C
∧
B
∪
C
∈
V
→
C
∈
V
45
43
31
44
sylancr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
C
∈
V
46
45
adantr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
C
∈
V
47
f1ofn
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
f
Fn
B
∪
C
48
elpreima
⊢
f
Fn
B
∪
C
→
y
∈
f
-1
x
×
A
↔
y
∈
B
∪
C
∧
f
y
∈
x
×
A
49
47
48
syl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
y
∈
f
-1
x
×
A
↔
y
∈
B
∪
C
∧
f
y
∈
x
×
A
50
49
adantr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
y
∈
f
-1
x
×
A
↔
y
∈
B
∪
C
∧
f
y
∈
x
×
A
51
elun
⊢
y
∈
B
∪
C
↔
y
∈
B
∨
y
∈
C
52
df-or
⊢
y
∈
B
∨
y
∈
C
↔
¬
y
∈
B
→
y
∈
C
53
51
52
bitri
⊢
y
∈
B
∪
C
↔
¬
y
∈
B
→
y
∈
C
54
eldifn
⊢
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
¬
x
∈
1
st
↾
A
×
A
∘
f
B
55
54
ad2antlr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
→
¬
x
∈
1
st
↾
A
×
A
∘
f
B
56
15
ad2antrr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
f
:
B
∪
C
⟶
A
×
A
57
simprr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
y
∈
B
58
28
57
sselid
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
y
∈
B
∪
C
59
fvco3
⊢
f
:
B
∪
C
⟶
A
×
A
∧
y
∈
B
∪
C
→
1
st
↾
A
×
A
∘
f
y
=
1
st
↾
A
×
A
f
y
60
56
58
59
syl2anc
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
1
st
↾
A
×
A
∘
f
y
=
1
st
↾
A
×
A
f
y
61
eldifi
⊢
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
x
∈
A
62
61
adantl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
x
∈
A
63
62
snssd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
x
⊆
A
64
xpss1
⊢
x
⊆
A
→
x
×
A
⊆
A
×
A
65
63
64
syl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
x
×
A
⊆
A
×
A
66
65
adantr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
x
×
A
⊆
A
×
A
67
simprl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
f
y
∈
x
×
A
68
66
67
sseldd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
f
y
∈
A
×
A
69
68
fvresd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
1
st
↾
A
×
A
f
y
=
1
st
f
y
70
xp1st
⊢
f
y
∈
x
×
A
→
1
st
f
y
∈
x
71
67
70
syl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
1
st
f
y
∈
x
72
69
71
eqeltrd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
1
st
↾
A
×
A
f
y
∈
x
73
elsni
⊢
1
st
↾
A
×
A
f
y
∈
x
→
1
st
↾
A
×
A
f
y
=
x
74
72
73
syl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
1
st
↾
A
×
A
f
y
=
x
75
60
74
eqtrd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
1
st
↾
A
×
A
∘
f
y
=
x
76
17
ffnd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
1
st
↾
A
×
A
∘
f
Fn
B
∪
C
77
76
ad2antrr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
1
st
↾
A
×
A
∘
f
Fn
B
∪
C
78
28
a1i
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
B
⊆
B
∪
C
79
fnfvima
⊢
1
st
↾
A
×
A
∘
f
Fn
B
∪
C
∧
B
⊆
B
∪
C
∧
y
∈
B
→
1
st
↾
A
×
A
∘
f
y
∈
1
st
↾
A
×
A
∘
f
B
80
77
78
57
79
syl3anc
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
1
st
↾
A
×
A
∘
f
y
∈
1
st
↾
A
×
A
∘
f
B
81
75
80
eqeltrrd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
∧
y
∈
B
→
x
∈
1
st
↾
A
×
A
∘
f
B
82
81
expr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
→
y
∈
B
→
x
∈
1
st
↾
A
×
A
∘
f
B
83
55
82
mtod
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
∧
f
y
∈
x
×
A
→
¬
y
∈
B
84
83
ex
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
f
y
∈
x
×
A
→
¬
y
∈
B
85
84
imim1d
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
¬
y
∈
B
→
y
∈
C
→
f
y
∈
x
×
A
→
y
∈
C
86
53
85
biimtrid
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
y
∈
B
∪
C
→
f
y
∈
x
×
A
→
y
∈
C
87
86
impd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
y
∈
B
∪
C
∧
f
y
∈
x
×
A
→
y
∈
C
88
50
87
sylbid
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
y
∈
f
-1
x
×
A
→
y
∈
C
89
88
ssrdv
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
f
-1
x
×
A
⊆
C
90
ssdomg
⊢
C
∈
V
→
f
-1
x
×
A
⊆
C
→
f
-1
x
×
A
≼
C
91
46
89
90
sylc
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
f
-1
x
×
A
≼
C
92
f1ocnv
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
f
-1
:
A
×
A
⟶
1-1 onto
B
∪
C
93
f1of1
⊢
f
-1
:
A
×
A
⟶
1-1 onto
B
∪
C
→
f
-1
:
A
×
A
⟶
1-1
B
∪
C
94
92
93
syl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
f
-1
:
A
×
A
⟶
1-1
B
∪
C
95
94
adantr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
f
-1
:
A
×
A
⟶
1-1
B
∪
C
96
31
adantr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
B
∪
C
∈
V
97
vsnex
⊢
x
∈
V
98
12
adantr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
A
∈
V
99
xpexg
⊢
x
∈
V
∧
A
∈
V
→
x
×
A
∈
V
100
97
98
99
sylancr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
x
×
A
∈
V
101
f1imaen2g
⊢
f
-1
:
A
×
A
⟶
1-1
B
∪
C
∧
B
∪
C
∈
V
∧
x
×
A
⊆
A
×
A
∧
x
×
A
∈
V
→
f
-1
x
×
A
≈
x
×
A
102
95
96
65
100
101
syl22anc
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
f
-1
x
×
A
≈
x
×
A
103
vex
⊢
x
∈
V
104
xpsnen2g
⊢
x
∈
V
∧
A
∈
V
→
x
×
A
≈
A
105
103
98
104
sylancr
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
x
×
A
≈
A
106
entr
⊢
f
-1
x
×
A
≈
x
×
A
∧
x
×
A
≈
A
→
f
-1
x
×
A
≈
A
107
102
105
106
syl2anc
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
f
-1
x
×
A
≈
A
108
domen1
⊢
f
-1
x
×
A
≈
A
→
f
-1
x
×
A
≼
C
↔
A
≼
C
109
107
108
syl
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
f
-1
x
×
A
≼
C
↔
A
≼
C
110
91
109
mpbid
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
A
≼
C
111
110
olcd
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
∧
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
A
≼
*
B
∨
A
≼
C
112
111
ex
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
A
≼
*
B
∨
A
≼
C
113
112
exlimdv
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
∃
x
x
∈
A
∖
1
st
↾
A
×
A
∘
f
B
→
A
≼
*
B
∨
A
≼
C
114
42
113
biimtrid
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
A
∖
1
st
↾
A
×
A
∘
f
B
≠
∅
→
A
≼
*
B
∨
A
≼
C
115
41
114
pm2.61dne
⊢
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
A
≼
*
B
∨
A
≼
C
116
115
exlimiv
⊢
∃
f
f
:
B
∪
C
⟶
1-1 onto
A
×
A
→
A
≼
*
B
∨
A
≼
C
117
2
116
sylbi
⊢
B
∪
C
≈
A
×
A
→
A
≼
*
B
∨
A
≼
C
118
1
117
syl
⊢
A
×
A
≈
B
∪
C
→
A
≼
*
B
∨
A
≼
C