Metamath Proof Explorer


Theorem vmadivsum

Description: The sum of the von Mangoldt function over n is asymptotic to log x + O(1) . Equation 9.2.13 of Shapiro, p. 331. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Assertion vmadivsum x+n=1xΛnnlogx𝑂1

Proof

Step Hyp Ref Expression
1 reex V
2 rpssre +
3 1 2 ssexi +V
4 3 a1i +V
5 ovexd x+n=1xΛnnlogx!xV
6 ovexd x+logxlogx!xV
7 eqidd x+n=1xΛnnlogx!x=x+n=1xΛnnlogx!x
8 eqidd x+logxlogx!x=x+logxlogx!x
9 4 5 6 7 8 offval2 x+n=1xΛnnlogx!xfx+logxlogx!x=x+n=1xΛnn-logx!x-logxlogx!x
10 9 mptru x+n=1xΛnnlogx!xfx+logxlogx!x=x+n=1xΛnn-logx!x-logxlogx!x
11 fzfid x+1xFin
12 elfznn n1xn
13 12 adantl x+n1xn
14 vmacl nΛn
15 13 14 syl x+n1xΛn
16 15 13 nndivred x+n1xΛnn
17 11 16 fsumrecl x+n=1xΛnn
18 17 recnd x+n=1xΛnn
19 relogcl x+logx
20 19 recnd x+logx
21 rprege0 x+x0x
22 flge0nn0 x0xx0
23 faccl x0x!
24 21 22 23 3syl x+x!
25 24 nnrpd x+x!+
26 25 relogcld x+logx!
27 rerpdivcl logx!x+logx!x
28 26 27 mpancom x+logx!x
29 28 recnd x+logx!x
30 18 20 29 nnncan2d x+n=1xΛnn-logx!x-logxlogx!x=n=1xΛnnlogx
31 30 mpteq2ia x+n=1xΛnn-logx!x-logxlogx!x=x+n=1xΛnnlogx
32 10 31 eqtri x+n=1xΛnnlogx!xfx+logxlogx!x=x+n=1xΛnnlogx
33 1red 1
34 chpo1ub x+ψxx𝑂1
35 34 a1i x+ψxx𝑂1
36 rpre x+x
37 chpcl xψx
38 36 37 syl x+ψx
39 rerpdivcl ψxx+ψxx
40 38 39 mpancom x+ψxx
41 40 recnd x+ψxx
42 41 adantl x+ψxx
43 18 29 subcld x+n=1xΛnnlogx!x
44 43 adantl x+n=1xΛnnlogx!x
45 36 adantr x+n1xx
46 16 45 remulcld x+n1xΛnnx
47 nndivre xnxn
48 36 12 47 syl2an x+n1xxn
49 reflcl xnxn
50 48 49 syl x+n1xxn
51 15 50 remulcld x+n1xΛnxn
52 46 51 resubcld x+n1xΛnnxΛnxn
53 48 50 resubcld x+n1xxnxn
54 1red x+n1x1
55 vmage0 n0Λn
56 13 55 syl x+n1x0Λn
57 fracle1 xnxnxn1
58 48 57 syl x+n1xxnxn1
59 53 54 15 56 58 lemul2ad x+n1xΛnxnxnΛn1
60 15 recnd x+n1xΛn
61 48 recnd x+n1xxn
62 50 recnd x+n1xxn
63 60 61 62 subdid x+n1xΛnxnxn=ΛnxnΛnxn
64 rpcn x+x
65 64 adantr x+n1xx
66 13 nnrpd x+n1xn+
67 rpcnne0 n+nn0
68 66 67 syl x+n1xnn0
69 div23 Λnxnn0Λnxn=Λnnx
70 divass Λnxnn0Λnxn=Λnxn
71 69 70 eqtr3d Λnxnn0Λnnx=Λnxn
72 60 65 68 71 syl3anc x+n1xΛnnx=Λnxn
73 72 oveq1d x+n1xΛnnxΛnxn=ΛnxnΛnxn
74 63 73 eqtr4d x+n1xΛnxnxn=ΛnnxΛnxn
75 60 mulridd x+n1xΛn1=Λn
76 59 74 75 3brtr3d x+n1xΛnnxΛnxnΛn
77 11 52 15 76 fsumle x+n=1xΛnnxΛnxnn=1xΛn
78 16 recnd x+n1xΛnn
79 11 64 78 fsummulc1 x+n=1xΛnnx=n=1xΛnnx
80 logfac2 x0xlogx!=n=1xΛnxn
81 21 80 syl x+logx!=n=1xΛnxn
82 79 81 oveq12d x+n=1xΛnnxlogx!=n=1xΛnnxn=1xΛnxn
83 46 recnd x+n1xΛnnx
84 51 recnd x+n1xΛnxn
85 11 83 84 fsumsub x+n=1xΛnnxΛnxn=n=1xΛnnxn=1xΛnxn
86 82 85 eqtr4d x+n=1xΛnnxlogx!=n=1xΛnnxΛnxn
87 chpval xψx=n=1xΛn
88 36 87 syl x+ψx=n=1xΛn
89 77 86 88 3brtr4d x+n=1xΛnnxlogx!ψx
90 17 36 remulcld x+n=1xΛnnx
91 90 26 resubcld x+n=1xΛnnxlogx!
92 rpregt0 x+x0<x
93 lediv1 n=1xΛnnxlogx!ψxx0<xn=1xΛnnxlogx!ψxn=1xΛnnxlogx!xψxx
94 91 38 92 93 syl3anc x+n=1xΛnnxlogx!ψxn=1xΛnnxlogx!xψxx
95 89 94 mpbid x+n=1xΛnnxlogx!xψxx
96 90 recnd x+n=1xΛnnx
97 26 recnd x+logx!
98 rpcnne0 x+xx0
99 divsubdir n=1xΛnnxlogx!xx0n=1xΛnnxlogx!x=n=1xΛnnxxlogx!x
100 96 97 98 99 syl3anc x+n=1xΛnnxlogx!x=n=1xΛnnxxlogx!x
101 rpne0 x+x0
102 18 64 101 divcan4d x+n=1xΛnnxx=n=1xΛnn
103 102 oveq1d x+n=1xΛnnxxlogx!x=n=1xΛnnlogx!x
104 100 103 eqtr2d x+n=1xΛnnlogx!x=n=1xΛnnxlogx!x
105 104 fveq2d x+n=1xΛnnlogx!x=n=1xΛnnxlogx!x
106 rerpdivcl n=1xΛnnxlogx!x+n=1xΛnnxlogx!x
107 91 106 mpancom x+n=1xΛnnxlogx!x
108 flle xnxnxn
109 48 108 syl x+n1xxnxn
110 48 50 subge0d x+n1x0xnxnxnxn
111 109 110 mpbird x+n1x0xnxn
112 15 53 56 111 mulge0d x+n1x0Λnxnxn
113 112 74 breqtrd x+n1x0ΛnnxΛnxn
114 11 52 113 fsumge0 x+0n=1xΛnnxΛnxn
115 114 86 breqtrrd x+0n=1xΛnnxlogx!
116 divge0 n=1xΛnnxlogx!0n=1xΛnnxlogx!x0<x0n=1xΛnnxlogx!x
117 91 115 92 116 syl21anc x+0n=1xΛnnxlogx!x
118 107 117 absidd x+n=1xΛnnxlogx!x=n=1xΛnnxlogx!x
119 105 118 eqtrd x+n=1xΛnnlogx!x=n=1xΛnnxlogx!x
120 chpge0 x0ψx
121 36 120 syl x+0ψx
122 divge0 ψx0ψxx0<x0ψxx
123 38 121 92 122 syl21anc x+0ψxx
124 40 123 absidd x+ψxx=ψxx
125 95 119 124 3brtr4d x+n=1xΛnnlogx!xψxx
126 125 ad2antrl x+1xn=1xΛnnlogx!xψxx
127 33 35 42 44 126 o1le x+n=1xΛnnlogx!x𝑂1
128 127 mptru x+n=1xΛnnlogx!x𝑂1
129 logfacrlim x+logxlogx!x1
130 rlimo1 x+logxlogx!x1x+logxlogx!x𝑂1
131 129 130 ax-mp x+logxlogx!x𝑂1
132 o1sub x+n=1xΛnnlogx!x𝑂1x+logxlogx!x𝑂1x+n=1xΛnnlogx!xfx+logxlogx!x𝑂1
133 128 131 132 mp2an x+n=1xΛnnlogx!xfx+logxlogx!x𝑂1
134 32 133 eqeltrri x+n=1xΛnnlogx𝑂1