Metamath Proof Explorer


Theorem xkoccn

Description: The "constant function" function which maps x e. Y to the constant function z e. X |-> x is a continuous function from X into the space of continuous functions from Y to X . This can also be understood as the currying of the first projection function. (The currying of the second projection function is x e. Y |-> ( z e. X |-> z ) , which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion xkoccn RTopOnXSTopOnYxYX×xSCnS^koR

Proof

Step Hyp Ref Expression
1 cnconst2 RTopOnXSTopOnYxYX×xRCnS
2 1 3expa RTopOnXSTopOnYxYX×xRCnS
3 2 fmpttd RTopOnXSTopOnYxYX×x:YRCnS
4 eqid R=R
5 eqid z𝒫R|R𝑡zComp=z𝒫R|R𝑡zComp
6 eqid kz𝒫R|R𝑡zComp,vSfRCnS|fkv=kz𝒫R|R𝑡zComp,vSfRCnS|fkv
7 4 5 6 xkobval rankz𝒫R|R𝑡zComp,vSfRCnS|fkv=y|k𝒫RvSR𝑡kCompy=fRCnS|fkv
8 7 eqabri yrankz𝒫R|R𝑡zComp,vSfRCnS|fkvk𝒫RvSR𝑡kCompy=fRCnS|fkv
9 2 ad5ant15 RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=xYX×xRCnS
10 simplr RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=xYk=
11 10 imaeq2d RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=xYX×xk=X×x
12 ima0 X×x=
13 0ss v
14 12 13 eqsstri X×xv
15 11 14 eqsstrdi RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=xYX×xkv
16 imaeq1 f=X×xfk=X×xk
17 16 sseq1d f=X×xfkvX×xkv
18 17 elrab X×xfRCnS|fkvX×xRCnSX×xkv
19 9 15 18 sylanbrc RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=xYX×xfRCnS|fkv
20 19 ralrimiva RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=xYX×xfRCnS|fkv
21 rabid2 Y=xY|X×xfRCnS|fkvxYX×xfRCnS|fkv
22 20 21 sylibr RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=Y=xY|X×xfRCnS|fkv
23 simpllr RTopOnXSTopOnYk𝒫RvSR𝑡kCompSTopOnY
24 toponmax STopOnYYS
25 23 24 syl RTopOnXSTopOnYk𝒫RvSR𝑡kCompYS
26 25 adantr RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=YS
27 22 26 eqeltrrd RTopOnXSTopOnYk𝒫RvSR𝑡kCompk=xY|X×xfRCnS|fkvS
28 ifnefalse kifk=Yv=v
29 28 ad2antlr RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYifk=Yv=v
30 29 eleq2d RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYxifk=Yvxv
31 vex xV
32 31 snss xvxv
33 30 32 bitrdi RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYxifk=Yvxv
34 df-ima X×xk=ranX×xk
35 simplrl RTopOnXSTopOnYk𝒫RvSR𝑡kCompk𝒫R
36 35 ad2antrr RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYk𝒫R
37 36 elpwid RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYkR
38 toponuni RTopOnXX=R
39 38 ad5antr RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYX=R
40 37 39 sseqtrrd RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYkX
41 xpssres kXX×xk=k×x
42 40 41 syl RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYX×xk=k×x
43 42 rneqd RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYranX×xk=rank×x
44 34 43 eqtrid RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYX×xk=rank×x
45 rnxp krank×x=x
46 45 ad2antlr RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYrank×x=x
47 44 46 eqtrd RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYX×xk=x
48 47 sseq1d RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYX×xkvxv
49 2 ad5ant15 RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYX×xRCnS
50 49 biantrurd RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYX×xkvX×xRCnSX×xkv
51 33 48 50 3bitr2d RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYxifk=YvX×xRCnSX×xkv
52 30 51 bitr3d RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYxvX×xRCnSX×xkv
53 52 18 bitr4di RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxYxvX×xfRCnS|fkv
54 53 rabbi2dva RTopOnXSTopOnYk𝒫RvSR𝑡kCompkYv=xY|X×xfRCnS|fkv
55 simplrr RTopOnXSTopOnYk𝒫RvSR𝑡kCompvS
56 toponss STopOnYvSvY
57 23 55 56 syl2anc RTopOnXSTopOnYk𝒫RvSR𝑡kCompvY
58 57 adantr RTopOnXSTopOnYk𝒫RvSR𝑡kCompkvY
59 sseqin2 vYYv=v
60 58 59 sylib RTopOnXSTopOnYk𝒫RvSR𝑡kCompkYv=v
61 54 60 eqtr3d RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxY|X×xfRCnS|fkv=v
62 55 adantr RTopOnXSTopOnYk𝒫RvSR𝑡kCompkvS
63 61 62 eqeltrd RTopOnXSTopOnYk𝒫RvSR𝑡kCompkxY|X×xfRCnS|fkvS
64 27 63 pm2.61dane RTopOnXSTopOnYk𝒫RvSR𝑡kCompxY|X×xfRCnS|fkvS
65 imaeq2 y=fRCnS|fkvxYX×x-1y=xYX×x-1fRCnS|fkv
66 eqid xYX×x=xYX×x
67 66 mptpreima xYX×x-1fRCnS|fkv=xY|X×xfRCnS|fkv
68 65 67 eqtrdi y=fRCnS|fkvxYX×x-1y=xY|X×xfRCnS|fkv
69 68 eleq1d y=fRCnS|fkvxYX×x-1ySxY|X×xfRCnS|fkvS
70 64 69 syl5ibrcom RTopOnXSTopOnYk𝒫RvSR𝑡kCompy=fRCnS|fkvxYX×x-1yS
71 70 expimpd RTopOnXSTopOnYk𝒫RvSR𝑡kCompy=fRCnS|fkvxYX×x-1yS
72 71 rexlimdvva RTopOnXSTopOnYk𝒫RvSR𝑡kCompy=fRCnS|fkvxYX×x-1yS
73 8 72 biimtrid RTopOnXSTopOnYyrankz𝒫R|R𝑡zComp,vSfRCnS|fkvxYX×x-1yS
74 73 ralrimiv RTopOnXSTopOnYyrankz𝒫R|R𝑡zComp,vSfRCnS|fkvxYX×x-1yS
75 simpr RTopOnXSTopOnYSTopOnY
76 ovex RCnSV
77 76 pwex 𝒫RCnSV
78 4 5 6 xkotf kz𝒫R|R𝑡zComp,vSfRCnS|fkv:z𝒫R|R𝑡zComp×S𝒫RCnS
79 frn kz𝒫R|R𝑡zComp,vSfRCnS|fkv:z𝒫R|R𝑡zComp×S𝒫RCnSrankz𝒫R|R𝑡zComp,vSfRCnS|fkv𝒫RCnS
80 78 79 ax-mp rankz𝒫R|R𝑡zComp,vSfRCnS|fkv𝒫RCnS
81 77 80 ssexi rankz𝒫R|R𝑡zComp,vSfRCnS|fkvV
82 81 a1i RTopOnXSTopOnYrankz𝒫R|R𝑡zComp,vSfRCnS|fkvV
83 topontop RTopOnXRTop
84 topontop STopOnYSTop
85 4 5 6 xkoval RTopSTopS^koR=topGenfirankz𝒫R|R𝑡zComp,vSfRCnS|fkv
86 83 84 85 syl2an RTopOnXSTopOnYS^koR=topGenfirankz𝒫R|R𝑡zComp,vSfRCnS|fkv
87 eqid S^koR=S^koR
88 87 xkotopon RTopSTopS^koRTopOnRCnS
89 83 84 88 syl2an RTopOnXSTopOnYS^koRTopOnRCnS
90 75 82 86 89 subbascn RTopOnXSTopOnYxYX×xSCnS^koRxYX×x:YRCnSyrankz𝒫R|R𝑡zComp,vSfRCnS|fkvxYX×x-1yS
91 3 74 90 mpbir2and RTopOnXSTopOnYxYX×xSCnS^koR