Step |
Hyp |
Ref |
Expression |
1 |
|
cnconst2 |
|
2 |
1
|
3expa |
|
3 |
2
|
fmpttd |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
4 5 6
|
xkobval |
|
8 |
7
|
abeq2i |
|
9 |
2
|
ad5ant15 |
|
10 |
|
simplr |
|
11 |
10
|
imaeq2d |
|
12 |
|
ima0 |
|
13 |
|
0ss |
|
14 |
12 13
|
eqsstri |
|
15 |
11 14
|
eqsstrdi |
|
16 |
|
imaeq1 |
|
17 |
16
|
sseq1d |
|
18 |
17
|
elrab |
|
19 |
9 15 18
|
sylanbrc |
|
20 |
19
|
ralrimiva |
|
21 |
|
rabid2 |
|
22 |
20 21
|
sylibr |
|
23 |
|
simpllr |
|
24 |
|
toponmax |
|
25 |
23 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
22 26
|
eqeltrrd |
|
28 |
|
ifnefalse |
|
29 |
28
|
ad2antlr |
|
30 |
29
|
eleq2d |
|
31 |
|
vex |
|
32 |
31
|
snss |
|
33 |
30 32
|
bitrdi |
|
34 |
|
df-ima |
|
35 |
|
simplrl |
|
36 |
35
|
ad2antrr |
|
37 |
36
|
elpwid |
|
38 |
|
toponuni |
|
39 |
38
|
ad5antr |
|
40 |
37 39
|
sseqtrrd |
|
41 |
|
xpssres |
|
42 |
40 41
|
syl |
|
43 |
42
|
rneqd |
|
44 |
34 43
|
eqtrid |
|
45 |
|
rnxp |
|
46 |
45
|
ad2antlr |
|
47 |
44 46
|
eqtrd |
|
48 |
47
|
sseq1d |
|
49 |
2
|
ad5ant15 |
|
50 |
49
|
biantrurd |
|
51 |
33 48 50
|
3bitr2d |
|
52 |
30 51
|
bitr3d |
|
53 |
52 18
|
bitr4di |
|
54 |
53
|
rabbi2dva |
|
55 |
|
simplrr |
|
56 |
|
toponss |
|
57 |
23 55 56
|
syl2anc |
|
58 |
57
|
adantr |
|
59 |
|
sseqin2 |
|
60 |
58 59
|
sylib |
|
61 |
54 60
|
eqtr3d |
|
62 |
55
|
adantr |
|
63 |
61 62
|
eqeltrd |
|
64 |
27 63
|
pm2.61dane |
|
65 |
|
imaeq2 |
|
66 |
|
eqid |
|
67 |
66
|
mptpreima |
|
68 |
65 67
|
eqtrdi |
|
69 |
68
|
eleq1d |
|
70 |
64 69
|
syl5ibrcom |
|
71 |
70
|
expimpd |
|
72 |
71
|
rexlimdvva |
|
73 |
8 72
|
syl5bi |
|
74 |
73
|
ralrimiv |
|
75 |
|
simpr |
|
76 |
|
ovex |
|
77 |
76
|
pwex |
|
78 |
4 5 6
|
xkotf |
|
79 |
|
frn |
|
80 |
78 79
|
ax-mp |
|
81 |
77 80
|
ssexi |
|
82 |
81
|
a1i |
|
83 |
|
topontop |
|
84 |
|
topontop |
|
85 |
4 5 6
|
xkoval |
|
86 |
83 84 85
|
syl2an |
|
87 |
|
eqid |
|
88 |
87
|
xkotopon |
|
89 |
83 84 88
|
syl2an |
|
90 |
75 82 86 89
|
subbascn |
|
91 |
3 74 90
|
mpbir2and |
|