Metamath Proof Explorer


Theorem xrge0iifcnv

Description: Define a bijection from [ 0 , 1 ] onto [ 0 , +oo ] . (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Hypothesis xrge0iifhmeo.1 F=x01ifx=0+∞logx
Assertion xrge0iifcnv F:011-1 onto0+∞F-1=y0+∞ify=+∞0ey

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F=x01ifx=0+∞logx
2 0xr 0*
3 pnfxr +∞*
4 0lepnf 0+∞
5 ubicc2 0*+∞*0+∞+∞0+∞
6 2 3 4 5 mp3an +∞0+∞
7 6 a1i x01x=0+∞0+∞
8 icossicc 0+∞0+∞
9 uncom 001=010
10 1xr 1*
11 0le1 01
12 snunioc 0*1*01001=01
13 2 10 11 12 mp3an 001=01
14 9 13 eqtr3i 010=01
15 14 eleq2i x010x01
16 elun x010x01x0
17 15 16 bitr3i x01x01x0
18 pm2.53 x01x0¬x01x0
19 17 18 sylbi x01¬x01x0
20 elsni x0x=0
21 19 20 syl6 x01¬x01x=0
22 21 con1d x01¬x=0x01
23 22 imp x01¬x=0x01
24 0le0 00
25 1re 1
26 ltpnf 11<+∞
27 25 26 ax-mp 1<+∞
28 iocssioo 0*+∞*001<+∞010+∞
29 2 3 24 27 28 mp4an 010+∞
30 ioorp 0+∞=+
31 29 30 sseqtri 01+
32 31 sseli x01x+
33 32 relogcld x01logx
34 33 renegcld x01logx
35 34 rexrd x01logx*
36 elioc1 0*1*x01x*0<xx1
37 2 10 36 mp2an x01x*0<xx1
38 37 simp3bi x01x1
39 1rp 1+
40 39 a1i x011+
41 32 40 logled x01x1logxlog1
42 38 41 mpbid x01logxlog1
43 log1 log1=0
44 42 43 breqtrdi x01logx0
45 33 le0neg1d x01logx00logx
46 44 45 mpbid x010logx
47 ltpnf logxlogx<+∞
48 34 47 syl x01logx<+∞
49 elico1 0*+∞*logx0+∞logx*0logxlogx<+∞
50 2 3 49 mp2an logx0+∞logx*0logxlogx<+∞
51 35 46 48 50 syl3anbrc x01logx0+∞
52 23 51 syl x01¬x=0logx0+∞
53 8 52 sselid x01¬x=0logx0+∞
54 7 53 ifclda x01ifx=0+∞logx0+∞
55 54 adantl x01ifx=0+∞logx0+∞
56 0elunit 001
57 56 a1i y0+∞y=+∞001
58 iocssicc 0101
59 snunico 0*+∞*0+∞0+∞+∞=0+∞
60 2 3 4 59 mp3an 0+∞+∞=0+∞
61 60 eleq2i y0+∞+∞y0+∞
62 elun y0+∞+∞y0+∞y+∞
63 61 62 bitr3i y0+∞y0+∞y+∞
64 pm2.53 y0+∞y+∞¬y0+∞y+∞
65 63 64 sylbi y0+∞¬y0+∞y+∞
66 elsni y+∞y=+∞
67 65 66 syl6 y0+∞¬y0+∞y=+∞
68 67 con1d y0+∞¬y=+∞y0+∞
69 68 imp y0+∞¬y=+∞y0+∞
70 rge0ssre 0+∞
71 70 sseli y0+∞y
72 71 renegcld y0+∞y
73 72 reefcld y0+∞ey
74 73 rexrd y0+∞ey*
75 efgt0 y0<ey
76 72 75 syl y0+∞0<ey
77 elico1 0*+∞*y0+∞y*0yy<+∞
78 2 3 77 mp2an y0+∞y*0yy<+∞
79 78 simp2bi y0+∞0y
80 71 le0neg2d y0+∞0yy0
81 79 80 mpbid y0+∞y0
82 0re 0
83 efle y0y0eye0
84 72 82 83 sylancl y0+∞y0eye0
85 81 84 mpbid y0+∞eye0
86 ef0 e0=1
87 85 86 breqtrdi y0+∞ey1
88 elioc1 0*1*ey01ey*0<eyey1
89 2 10 88 mp2an ey01ey*0<eyey1
90 74 76 87 89 syl3anbrc y0+∞ey01
91 69 90 syl y0+∞¬y=+∞ey01
92 58 91 sselid y0+∞¬y=+∞ey01
93 57 92 ifclda y0+∞ify=+∞0ey01
94 93 adantl y0+∞ify=+∞0ey01
95 eqeq2 0=ify=+∞0eyx=0x=ify=+∞0ey
96 95 bibi1d 0=ify=+∞0eyx=0y=ifx=0+∞logxx=ify=+∞0eyy=ifx=0+∞logx
97 eqeq2 ey=ify=+∞0eyx=eyx=ify=+∞0ey
98 97 bibi1d ey=ify=+∞0eyx=eyy=ifx=0+∞logxx=ify=+∞0eyy=ifx=0+∞logx
99 simpr x01y0+∞y=+∞y=+∞
100 iftrue x=0ifx=0+∞logx=+∞
101 100 eqeq2d x=0y=ifx=0+∞logxy=+∞
102 99 101 syl5ibrcom x01y0+∞y=+∞x=0y=ifx=0+∞logx
103 ubico 0+∞*¬+∞0+∞
104 82 3 103 mp2an ¬+∞0+∞
105 104 nelir +∞0+∞
106 neleq1 y=+∞y0+∞+∞0+∞
107 106 adantl x01y0+∞y=+∞y0+∞+∞0+∞
108 105 107 mpbiri x01y0+∞y=+∞y0+∞
109 neleq1 y=ifx=0+∞logxy0+∞ifx=0+∞logx0+∞
110 108 109 syl5ibcom x01y0+∞y=+∞y=ifx=0+∞logxifx=0+∞logx0+∞
111 df-nel ifx=0+∞logx0+∞¬ifx=0+∞logx0+∞
112 iffalse ¬x=0ifx=0+∞logx=logx
113 112 adantl x01¬x=0ifx=0+∞logx=logx
114 113 52 eqeltrd x01¬x=0ifx=0+∞logx0+∞
115 114 ex x01¬x=0ifx=0+∞logx0+∞
116 115 ad2antrr x01y0+∞y=+∞¬x=0ifx=0+∞logx0+∞
117 116 con1d x01y0+∞y=+∞¬ifx=0+∞logx0+∞x=0
118 111 117 biimtrid x01y0+∞y=+∞ifx=0+∞logx0+∞x=0
119 110 118 syld x01y0+∞y=+∞y=ifx=0+∞logxx=0
120 102 119 impbid x01y0+∞y=+∞x=0y=ifx=0+∞logx
121 eqeq2 +∞=ifx=0+∞logxy=+∞y=ifx=0+∞logx
122 121 bibi2d +∞=ifx=0+∞logxx=eyy=+∞x=eyy=ifx=0+∞logx
123 eqeq2 logx=ifx=0+∞logxy=logxy=ifx=0+∞logx
124 123 bibi2d logx=ifx=0+∞logxx=eyy=logxx=eyy=ifx=0+∞logx
125 82 a1i y0+∞¬y=+∞0
126 69 76 syl y0+∞¬y=+∞0<ey
127 125 126 ltned y0+∞¬y=+∞0ey
128 127 adantll x01y0+∞¬y=+∞0ey
129 128 neneqd x01y0+∞¬y=+∞¬0=ey
130 eqeq1 x=0x=ey0=ey
131 130 notbid x=0¬x=ey¬0=ey
132 129 131 syl5ibrcom x01y0+∞¬y=+∞x=0¬x=ey
133 132 imp x01y0+∞¬y=+∞x=0¬x=ey
134 simplr x01y0+∞¬y=+∞x=0¬y=+∞
135 133 134 2falsed x01y0+∞¬y=+∞x=0x=eyy=+∞
136 eqcom x=eyey=x
137 136 a1i x01y0+∞x=eyey=x
138 relogeftb x+ylogx=yey=x
139 32 72 138 syl2an x01y0+∞logx=yey=x
140 33 recnd x01logx
141 71 recnd y0+∞y
142 negcon2 logxylogx=yy=logx
143 140 141 142 syl2an x01y0+∞logx=yy=logx
144 137 139 143 3bitr2d x01y0+∞x=eyy=logx
145 23 69 144 syl2an x01¬x=0y0+∞¬y=+∞x=eyy=logx
146 145 an4s x01y0+∞¬x=0¬y=+∞x=eyy=logx
147 146 anass1rs x01y0+∞¬y=+∞¬x=0x=eyy=logx
148 122 124 135 147 ifbothda x01y0+∞¬y=+∞x=eyy=ifx=0+∞logx
149 96 98 120 148 ifbothda x01y0+∞x=ify=+∞0eyy=ifx=0+∞logx
150 149 adantl x01y0+∞x=ify=+∞0eyy=ifx=0+∞logx
151 1 55 94 150 f1ocnv2d F:011-1 onto0+∞F-1=y0+∞ify=+∞0ey
152 151 mptru F:011-1 onto0+∞F-1=y0+∞ify=+∞0ey