| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
| 2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
| 3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
| 4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
| 5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
| 6 |
|
ballotlemfcc.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑂 ) |
| 7 |
|
ballotlemfcc.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ ) |
| 8 |
|
ballotlemfcc.3 |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 1 ... 𝐽 ) 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ) |
| 9 |
|
ballotlemfcc.4 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) < 0 ) |
| 10 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) |
| 11 |
10
|
breq2d |
⊢ ( 𝑖 = 𝑘 → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ↔ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) |
| 12 |
11
|
elrab |
⊢ ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ↔ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) |
| 13 |
12
|
anbi1i |
⊢ ( ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ↔ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) |
| 14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
| 15 |
14
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
| 16 |
|
fzssuz |
⊢ ( 1 ... 𝐽 ) ⊆ ( ℤ≥ ‘ 1 ) |
| 17 |
|
uzssz |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ |
| 18 |
16 17
|
sstri |
⊢ ( 1 ... 𝐽 ) ⊆ ℤ |
| 19 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 20 |
18 19
|
sstri |
⊢ ( 1 ... 𝐽 ) ⊆ ℝ |
| 21 |
20
|
sseli |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ℝ ) |
| 22 |
21
|
ltp1d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 < ( 𝑘 + 1 ) ) |
| 23 |
|
1red |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 1 ∈ ℝ ) |
| 24 |
21 23
|
readdcld |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 25 |
21 24
|
ltnled |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( 𝑘 < ( 𝑘 + 1 ) ↔ ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
| 26 |
22 25
|
mpbid |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
| 27 |
15 26
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
| 28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) < 0 ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → 𝑘 = 𝐽 ) |
| 31 |
30
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
| 32 |
31
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) < 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) < 0 ) ) |
| 33 |
|
elnnuz |
⊢ ( 𝐽 ∈ ℕ ↔ 𝐽 ∈ ( ℤ≥ ‘ 1 ) ) |
| 34 |
7 33
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( ℤ≥ ‘ 1 ) ) |
| 35 |
|
eluzfz2 |
⊢ ( 𝐽 ∈ ( ℤ≥ ‘ 1 ) → 𝐽 ∈ ( 1 ... 𝐽 ) ) |
| 36 |
34 35
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝐽 ) ) |
| 37 |
|
eleq1 |
⊢ ( 𝑘 = 𝐽 → ( 𝑘 ∈ ( 1 ... 𝐽 ) ↔ 𝐽 ∈ ( 1 ... 𝐽 ) ) ) |
| 38 |
36 37
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 = 𝐽 → 𝑘 ∈ ( 1 ... 𝐽 ) ) ) |
| 39 |
38
|
anc2li |
⊢ ( 𝜑 → ( 𝑘 = 𝐽 → ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐽 ) ) ) ) |
| 40 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 41 |
|
fzss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... 𝐽 ) ⊆ ( 0 ... 𝐽 ) ) |
| 42 |
41
|
sseld |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) ) |
| 43 |
40 42
|
ax-mp |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
| 44 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐶 ∈ 𝑂 ) |
| 45 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℤ ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℤ ) |
| 47 |
1 2 3 4 5 44 46
|
ballotlemfelz |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ) |
| 48 |
47
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℝ ) |
| 49 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 0 ∈ ℝ ) |
| 50 |
48 49
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) |
| 51 |
43 50
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐽 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) |
| 52 |
39 51
|
syl6 |
⊢ ( 𝜑 → ( 𝑘 = 𝐽 → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ) |
| 53 |
52
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) |
| 54 |
32 53
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) |
| 55 |
29 54
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) |
| 56 |
55
|
ex |
⊢ ( 𝜑 → ( 𝑘 = 𝐽 → ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) |
| 57 |
56
|
con2d |
⊢ ( 𝜑 → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) → ¬ 𝑘 = 𝐽 ) ) |
| 58 |
|
nn1m1nn |
⊢ ( 𝐽 ∈ ℕ → ( 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) |
| 59 |
7 58
|
syl |
⊢ ( 𝜑 → ( 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) |
| 60 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ∃ 𝑖 ∈ ( 1 ... 𝐽 ) 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ) |
| 61 |
|
oveq1 |
⊢ ( 𝐽 = 1 → ( 𝐽 ... 𝐽 ) = ( 1 ... 𝐽 ) ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( 𝐽 ... 𝐽 ) = ( 1 ... 𝐽 ) ) |
| 63 |
7
|
nnzd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
| 64 |
|
fzsn |
⊢ ( 𝐽 ∈ ℤ → ( 𝐽 ... 𝐽 ) = { 𝐽 } ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → ( 𝐽 ... 𝐽 ) = { 𝐽 } ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( 𝐽 ... 𝐽 ) = { 𝐽 } ) |
| 67 |
62 66
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( 1 ... 𝐽 ) = { 𝐽 } ) |
| 68 |
60 67
|
rexeqtrdv |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ∃ 𝑖 ∈ { 𝐽 } 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑖 = 𝐽 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
| 70 |
69
|
breq2d |
⊢ ( 𝑖 = 𝐽 → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ↔ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) ) |
| 71 |
70
|
rexsng |
⊢ ( 𝐽 ∈ ℕ → ( ∃ 𝑖 ∈ { 𝐽 } 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ↔ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) ) |
| 72 |
7 71
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ { 𝐽 } 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ↔ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( ∃ 𝑖 ∈ { 𝐽 } 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ↔ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) ) |
| 74 |
68 73
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
| 75 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) < 0 ) |
| 76 |
1 2 3 4 5 6 63
|
ballotlemfelz |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ) |
| 77 |
76
|
zred |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℝ ) |
| 78 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 79 |
77 78
|
ltnled |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) ) |
| 81 |
75 80
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
| 82 |
74 81
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐽 = 1 ) |
| 83 |
|
biortn |
⊢ ( ¬ 𝐽 = 1 → ( ( 𝐽 − 1 ) ∈ ℕ ↔ ( ¬ ¬ 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) ) |
| 84 |
82 83
|
syl |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) ∈ ℕ ↔ ( ¬ ¬ 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) ) |
| 85 |
|
notnotb |
⊢ ( 𝐽 = 1 ↔ ¬ ¬ 𝐽 = 1 ) |
| 86 |
85
|
orbi1i |
⊢ ( ( 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ↔ ( ¬ ¬ 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) |
| 87 |
84 86
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) ∈ ℕ ↔ ( 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) ) |
| 88 |
59 87
|
mpbird |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℕ ) |
| 89 |
|
elnnuz |
⊢ ( ( 𝐽 − 1 ) ∈ ℕ ↔ ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 90 |
88 89
|
sylib |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 91 |
|
elfzp1 |
⊢ ( ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝑘 ∈ ( 1 ... ( ( 𝐽 − 1 ) + 1 ) ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = ( ( 𝐽 − 1 ) + 1 ) ) ) ) |
| 92 |
90 91
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... ( ( 𝐽 − 1 ) + 1 ) ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = ( ( 𝐽 − 1 ) + 1 ) ) ) ) |
| 93 |
7
|
nncnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
| 94 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 95 |
93 94
|
npcand |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) + 1 ) = 𝐽 ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝐽 − 1 ) + 1 ) ) = ( 1 ... 𝐽 ) ) |
| 97 |
96
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... ( ( 𝐽 − 1 ) + 1 ) ) ↔ 𝑘 ∈ ( 1 ... 𝐽 ) ) ) |
| 98 |
95
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑘 = ( ( 𝐽 − 1 ) + 1 ) ↔ 𝑘 = 𝐽 ) ) |
| 99 |
98
|
orbi2d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = ( ( 𝐽 − 1 ) + 1 ) ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = 𝐽 ) ) ) |
| 100 |
92 97 99
|
3bitr3d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... 𝐽 ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = 𝐽 ) ) ) |
| 101 |
|
orcom |
⊢ ( ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = 𝐽 ) ↔ ( 𝑘 = 𝐽 ∨ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) |
| 102 |
100 101
|
bitrdi |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... 𝐽 ) ↔ ( 𝑘 = 𝐽 ∨ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) ) |
| 103 |
102
|
biimpd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( 𝑘 = 𝐽 ∨ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) ) |
| 104 |
|
pm5.6 |
⊢ ( ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ¬ 𝑘 = 𝐽 ) → 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ↔ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( 𝑘 = 𝐽 ∨ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) ) |
| 105 |
103 104
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ¬ 𝑘 = 𝐽 ) → 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) |
| 106 |
88
|
nnzd |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℤ ) |
| 107 |
|
1z |
⊢ 1 ∈ ℤ |
| 108 |
106 107
|
jctil |
⊢ ( 𝜑 → ( 1 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ) |
| 109 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) → 𝑘 ∈ ℤ ) |
| 110 |
109 107
|
jctir |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ) ) |
| 111 |
|
fzaddel |
⊢ ( ( ( 1 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ) ) |
| 112 |
108 110 111
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ) ) |
| 113 |
112
|
biimp3a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ) |
| 114 |
113
|
3anidm23 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ) |
| 115 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 116 |
115
|
a1i |
⊢ ( 𝜑 → ( 1 + 1 ) = 2 ) |
| 117 |
116 95
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) = ( 2 ... 𝐽 ) ) |
| 118 |
117
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( 2 ... 𝐽 ) ) ) |
| 119 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
| 120 |
|
fzss1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... 𝐽 ) ⊆ ( 1 ... 𝐽 ) ) |
| 121 |
119 120
|
ax-mp |
⊢ ( 2 ... 𝐽 ) ⊆ ( 1 ... 𝐽 ) |
| 122 |
121
|
sseli |
⊢ ( ( 𝑘 + 1 ) ∈ ( 2 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
| 123 |
118 122
|
biimtrdi |
⊢ ( 𝜑 → ( ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
| 125 |
114 124
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
| 126 |
125
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
| 127 |
105 126
|
syld |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ¬ 𝑘 = 𝐽 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
| 128 |
57 127
|
sylan2d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
| 129 |
128
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
| 130 |
129
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
| 131 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) |
| 132 |
131
|
breq2d |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ↔ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 133 |
132
|
elrab |
⊢ ( ( 𝑘 + 1 ) ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ↔ ( ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 134 |
|
breq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 ≤ 𝑘 ↔ ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
| 135 |
134
|
rspccva |
⊢ ( ( ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ) → ( 𝑘 + 1 ) ≤ 𝑘 ) |
| 136 |
133 135
|
sylan2br |
⊢ ( ( ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ∧ ( ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑘 + 1 ) ≤ 𝑘 ) |
| 137 |
136
|
expr |
⊢ ( ( ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) → ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
| 138 |
137
|
con3d |
⊢ ( ( ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ¬ ( 𝑘 + 1 ) ≤ 𝑘 → ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 139 |
28 130 138
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ¬ ( 𝑘 + 1 ) ≤ 𝑘 → ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 140 |
27 139
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) |
| 141 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) |
| 142 |
130
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
| 143 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 0 ∈ ℝ ) |
| 144 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 𝜑 ) |
| 145 |
129
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
| 146 |
41
|
sseld |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) ) |
| 147 |
40 145 146
|
mpsyl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) |
| 148 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) → 𝐶 ∈ 𝑂 ) |
| 149 |
|
elfzelz |
⊢ ( ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 151 |
1 2 3 4 5 148 150
|
ballotlemfelz |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
| 152 |
151
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 153 |
144 147 152
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 154 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) |
| 155 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
| 156 |
155 43
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
| 157 |
128
|
imdistani |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) → ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
| 158 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → 𝐶 ∈ 𝑂 ) |
| 159 |
|
elfznn |
⊢ ( ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 160 |
159
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 161 |
1 2 3 4 5 158 160
|
ballotlemfp1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ( ¬ ( 𝑘 + 1 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ) ∧ ( ( 𝑘 + 1 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ) ) ) |
| 162 |
161
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ( 𝑘 + 1 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ) ) |
| 163 |
162
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ) |
| 164 |
157 163
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ) |
| 165 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ℤ ) |
| 166 |
165
|
zcnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ℂ ) |
| 167 |
|
1cnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 1 ∈ ℂ ) |
| 168 |
166 167
|
pncand |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 169 |
168
|
fveq2d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) = ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) |
| 170 |
169
|
oveq1d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) |
| 171 |
170
|
eqeq2d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
| 172 |
155 171
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
| 173 |
164 172
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) |
| 174 |
|
0z |
⊢ 0 ∈ ℤ |
| 175 |
|
zleltp1 |
⊢ ( ( 0 ∈ ℤ ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ 0 < ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
| 176 |
174 47 175
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ 0 < ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
| 177 |
176
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ 0 < ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
| 178 |
|
breq2 |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ↔ 0 < ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
| 179 |
178
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ↔ 0 < ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
| 180 |
177 179
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 181 |
144 156 173 180
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 182 |
154 181
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) |
| 183 |
143 153 182
|
ltled |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) |
| 184 |
183
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) |
| 185 |
141 142 184 136
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 𝑘 + 1 ) ≤ 𝑘 ) |
| 186 |
27 185
|
mtand |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) |
| 187 |
161
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ¬ ( 𝑘 + 1 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ) ) |
| 188 |
187
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ) |
| 189 |
157 188
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ) |
| 190 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
| 191 |
169
|
oveq1d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) |
| 192 |
191
|
eqeq2d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
| 193 |
190 192
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
| 194 |
189 193
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) |
| 195 |
194
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) |
| 196 |
186 195
|
mpdan |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) |
| 197 |
|
breq2 |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ↔ 0 ≤ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
| 198 |
197
|
notbid |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) → ( ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ↔ ¬ 0 ≤ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
| 199 |
196 198
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ¬ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ↔ ¬ 0 ≤ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
| 200 |
140 199
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ¬ 0 ≤ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) |
| 201 |
14 43
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
| 202 |
201 47
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ) |
| 203 |
202
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ) |
| 204 |
|
zlem1lt |
⊢ ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) < 0 ) ) |
| 205 |
174 204
|
mpan2 |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) < 0 ) ) |
| 206 |
|
zre |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℝ ) |
| 207 |
|
1red |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → 1 ∈ ℝ ) |
| 208 |
206 207
|
resubcld |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ∈ ℝ ) |
| 209 |
|
0red |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → 0 ∈ ℝ ) |
| 210 |
208 209
|
ltnled |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) < 0 ↔ ¬ 0 ≤ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
| 211 |
205 210
|
bitrd |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ¬ 0 ≤ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
| 212 |
203 211
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ¬ 0 ≤ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
| 213 |
200 212
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) |
| 214 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) |
| 215 |
203
|
zred |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℝ ) |
| 216 |
|
0red |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → 0 ∈ ℝ ) |
| 217 |
215 216
|
letri3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ) |
| 218 |
213 214 217
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
| 219 |
13 218
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
| 220 |
|
ssrab2 |
⊢ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ⊆ ( 1 ... 𝐽 ) |
| 221 |
220 20
|
sstri |
⊢ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ⊆ ℝ |
| 222 |
221
|
a1i |
⊢ ( 𝜑 → { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ⊆ ℝ ) |
| 223 |
|
fzfi |
⊢ ( 1 ... 𝐽 ) ∈ Fin |
| 224 |
|
ssfi |
⊢ ( ( ( 1 ... 𝐽 ) ∈ Fin ∧ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ⊆ ( 1 ... 𝐽 ) ) → { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∈ Fin ) |
| 225 |
223 220 224
|
mp2an |
⊢ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∈ Fin |
| 226 |
225
|
a1i |
⊢ ( 𝜑 → { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∈ Fin ) |
| 227 |
|
rabn0 |
⊢ ( { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ≠ ∅ ↔ ∃ 𝑖 ∈ ( 1 ... 𝐽 ) 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ) |
| 228 |
8 227
|
sylibr |
⊢ ( 𝜑 → { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ≠ ∅ ) |
| 229 |
|
fimaxre |
⊢ ( ( { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ⊆ ℝ ∧ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∈ Fin ∧ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ≠ ∅ ) → ∃ 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) |
| 230 |
222 226 228 229
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗 ≤ 𝑘 ) |
| 231 |
219 230
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
| 232 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
| 233 |
232
|
anim1i |
⊢ ( ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) → ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) ) |
| 234 |
233
|
reximi2 |
⊢ ( ∃ 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 → ∃ 𝑘 ∈ ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
| 235 |
231 234
|
syl |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |