Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemm10.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemm10.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemm10.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemm10.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdlemm10.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdlemm10.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemm10.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemm10.c |
⊢ 𝐶 = { 𝑟 ∈ 𝐴 ∣ ( 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑟 ≤ 𝑊 ) } |
9 |
|
cdlemm10.f |
⊢ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑠 ) |
10 |
|
cdlemm10.g |
⊢ 𝐺 = ( 𝑞 ∈ 𝐶 ↦ ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑞 ) ) |
11 |
|
riotaex |
⊢ ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑞 ) ∈ V |
12 |
11 10
|
fnmpti |
⊢ 𝐺 Fn 𝐶 |
13 |
|
fvelrnb |
⊢ ( 𝐺 Fn 𝐶 → ( 𝑔 ∈ ran 𝐺 ↔ ∃ 𝑠 ∈ 𝐶 ( 𝐺 ‘ 𝑠 ) = 𝑔 ) ) |
14 |
12 13
|
ax-mp |
⊢ ( 𝑔 ∈ ran 𝐺 ↔ ∃ 𝑠 ∈ 𝐶 ( 𝐺 ‘ 𝑠 ) = 𝑔 ) |
15 |
|
eqeq2 |
⊢ ( 𝑞 = 𝑠 → ( ( 𝑓 ‘ 𝑃 ) = 𝑞 ↔ ( 𝑓 ‘ 𝑃 ) = 𝑠 ) ) |
16 |
15
|
riotabidv |
⊢ ( 𝑞 = 𝑠 → ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑞 ) = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑠 ) ) |
17 |
|
riotaex |
⊢ ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑠 ) ∈ V |
18 |
16 10 17
|
fvmpt |
⊢ ( 𝑠 ∈ 𝐶 → ( 𝐺 ‘ 𝑠 ) = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑠 ) ) |
19 |
18 9
|
eqtr4di |
⊢ ( 𝑠 ∈ 𝐶 → ( 𝐺 ‘ 𝑠 ) = 𝐹 ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑠 ∈ 𝐶 ) → ( 𝐺 ‘ 𝑠 ) = 𝐹 ) |
21 |
20
|
eqeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑠 ∈ 𝐶 ) → ( ( 𝐺 ‘ 𝑠 ) = 𝑔 ↔ 𝐹 = 𝑔 ) ) |
22 |
21
|
rexbidva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ∃ 𝑠 ∈ 𝐶 ( 𝐺 ‘ 𝑠 ) = 𝑔 ↔ ∃ 𝑠 ∈ 𝐶 𝐹 = 𝑔 ) ) |
23 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → 𝑔 ∈ 𝑇 ) |
25 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → 𝑃 ∈ 𝐴 ) |
26 |
1 3 4 5
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑃 ) ∈ 𝐴 ) |
27 |
23 24 25 26
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑔 ‘ 𝑃 ) ∈ 𝐴 ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
29 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → 𝐾 ∈ HL ) |
30 |
29
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → 𝐾 ∈ Lat ) |
31 |
28 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
32 |
25 31
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
33 |
28 4 5
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑔 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
23 24 32 33
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑔 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
28 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑔 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( 𝑔 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
36 |
30 32 34 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑃 ∨ ( 𝑔 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
37 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → 𝑉 ∈ 𝐴 ) |
38 |
28 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
39 |
29 25 37 38
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
40 |
28 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑔 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑔 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝑔 ‘ 𝑃 ) ) ) |
41 |
30 32 34 40
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑔 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝑔 ‘ 𝑃 ) ) ) |
42 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
43 |
1 2 3 4 5 6
|
trljat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) = ( 𝑃 ∨ ( 𝑔 ‘ 𝑃 ) ) ) |
44 |
23 24 42 43
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) = ( 𝑃 ∨ ( 𝑔 ‘ 𝑃 ) ) ) |
45 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) |
46 |
28 4 5 6
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝑅 ‘ 𝑔 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
23 24 46
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑅 ‘ 𝑔 ) ∈ ( Base ‘ 𝐾 ) ) |
48 |
28 3
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
49 |
37 48
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
50 |
28 1 2
|
latjlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ 𝑔 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 → ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
51 |
30 47 49 32 50
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 → ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
52 |
45 51
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ≤ ( 𝑃 ∨ 𝑉 ) ) |
53 |
44 52
|
eqbrtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑃 ∨ ( 𝑔 ‘ 𝑃 ) ) ≤ ( 𝑃 ∨ 𝑉 ) ) |
54 |
28 1 30 34 36 39 41 53
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑔 ‘ 𝑃 ) ≤ ( 𝑃 ∨ 𝑉 ) ) |
55 |
1 3 4 5
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑔 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑔 ‘ 𝑃 ) ≤ 𝑊 ) ) |
56 |
55
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ¬ ( 𝑔 ‘ 𝑃 ) ≤ 𝑊 ) |
57 |
23 24 42 56
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ¬ ( 𝑔 ‘ 𝑃 ) ≤ 𝑊 ) |
58 |
54 57
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( ( 𝑔 ‘ 𝑃 ) ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ ( 𝑔 ‘ 𝑃 ) ≤ 𝑊 ) ) |
59 |
|
breq1 |
⊢ ( 𝑟 = ( 𝑔 ‘ 𝑃 ) → ( 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ↔ ( 𝑔 ‘ 𝑃 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
60 |
|
breq1 |
⊢ ( 𝑟 = ( 𝑔 ‘ 𝑃 ) → ( 𝑟 ≤ 𝑊 ↔ ( 𝑔 ‘ 𝑃 ) ≤ 𝑊 ) ) |
61 |
60
|
notbid |
⊢ ( 𝑟 = ( 𝑔 ‘ 𝑃 ) → ( ¬ 𝑟 ≤ 𝑊 ↔ ¬ ( 𝑔 ‘ 𝑃 ) ≤ 𝑊 ) ) |
62 |
59 61
|
anbi12d |
⊢ ( 𝑟 = ( 𝑔 ‘ 𝑃 ) → ( ( 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑟 ≤ 𝑊 ) ↔ ( ( 𝑔 ‘ 𝑃 ) ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ ( 𝑔 ‘ 𝑃 ) ≤ 𝑊 ) ) ) |
63 |
62 8
|
elrab2 |
⊢ ( ( 𝑔 ‘ 𝑃 ) ∈ 𝐶 ↔ ( ( 𝑔 ‘ 𝑃 ) ∈ 𝐴 ∧ ( ( 𝑔 ‘ 𝑃 ) ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ ( 𝑔 ‘ 𝑃 ) ≤ 𝑊 ) ) ) |
64 |
27 58 63
|
sylanbrc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( 𝑔 ‘ 𝑃 ) ∈ 𝐶 ) |
65 |
1 3 4 5
|
cdlemeiota |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑔 ∈ 𝑇 ) → 𝑔 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = ( 𝑔 ‘ 𝑃 ) ) ) |
66 |
23 42 24 65
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → 𝑔 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = ( 𝑔 ‘ 𝑃 ) ) ) |
67 |
66
|
eqcomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = ( 𝑔 ‘ 𝑃 ) ) = 𝑔 ) |
68 |
|
eqeq2 |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑃 ) → ( ( 𝑓 ‘ 𝑃 ) = 𝑠 ↔ ( 𝑓 ‘ 𝑃 ) = ( 𝑔 ‘ 𝑃 ) ) ) |
69 |
68
|
riotabidv |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑃 ) → ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑠 ) = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = ( 𝑔 ‘ 𝑃 ) ) ) |
70 |
9 69
|
syl5eq |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑃 ) → 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = ( 𝑔 ‘ 𝑃 ) ) ) |
71 |
70
|
eqeq1d |
⊢ ( 𝑠 = ( 𝑔 ‘ 𝑃 ) → ( 𝐹 = 𝑔 ↔ ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = ( 𝑔 ‘ 𝑃 ) ) = 𝑔 ) ) |
72 |
71
|
rspcev |
⊢ ( ( ( 𝑔 ‘ 𝑃 ) ∈ 𝐶 ∧ ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = ( 𝑔 ‘ 𝑃 ) ) = 𝑔 ) → ∃ 𝑠 ∈ 𝐶 𝐹 = 𝑔 ) |
73 |
64 67 72
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) → ∃ 𝑠 ∈ 𝐶 𝐹 = 𝑔 ) |
74 |
73
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) → ∃ 𝑠 ∈ 𝐶 𝐹 = 𝑔 ) ) |
75 |
|
breq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ↔ 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
76 |
|
breq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 ≤ 𝑊 ↔ 𝑠 ≤ 𝑊 ) ) |
77 |
76
|
notbid |
⊢ ( 𝑟 = 𝑠 → ( ¬ 𝑟 ≤ 𝑊 ↔ ¬ 𝑠 ≤ 𝑊 ) ) |
78 |
75 77
|
anbi12d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑟 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑟 ≤ 𝑊 ) ↔ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) |
79 |
78 8
|
elrab2 |
⊢ ( 𝑠 ∈ 𝐶 ↔ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) |
80 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
81 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑃 ∈ 𝐴 ) |
82 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ¬ 𝑃 ≤ 𝑊 ) |
83 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑠 ∈ 𝐴 ) |
84 |
|
simprrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ¬ 𝑠 ≤ 𝑊 ) |
85 |
1 3 4 5 9
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
86 |
1 3 4 5 9
|
ltrniotaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) = 𝑠 ) |
87 |
85 86
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) |
88 |
80 81 82 83 84 87
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) |
89 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → 𝐹 ∈ 𝑇 ) |
90 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
91 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
92 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
93 |
1 2 92 3 4 5 6
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
94 |
90 89 91 93
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
95 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( 𝐹 ‘ 𝑃 ) = 𝑠 ) |
96 |
95
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑃 ∨ 𝑠 ) ) |
97 |
96
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑃 ∨ 𝑠 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
98 |
94 97
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ 𝑠 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
99 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
100 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑉 ∈ 𝐴 ) |
101 |
1 2 3
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑉 ) ) |
102 |
99 81 100 101
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑉 ) ) |
103 |
|
simprrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ) |
104 |
99
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝐾 ∈ Lat ) |
105 |
81 31
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
106 |
28 3
|
atbase |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ∈ ( Base ‘ 𝐾 ) ) |
107 |
106
|
ad2antrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑠 ∈ ( Base ‘ 𝐾 ) ) |
108 |
99 81 100 38
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
109 |
28 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑠 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑉 ) ∧ 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( 𝑃 ∨ 𝑠 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
110 |
104 105 107 108 109
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑉 ) ∧ 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ) ↔ ( 𝑃 ∨ 𝑠 ) ≤ ( 𝑃 ∨ 𝑉 ) ) ) |
111 |
102 103 110
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑠 ) ≤ ( 𝑃 ∨ 𝑉 ) ) |
112 |
28 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑠 ) ∈ ( Base ‘ 𝐾 ) ) |
113 |
99 81 83 112
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑠 ) ∈ ( Base ‘ 𝐾 ) ) |
114 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
115 |
28 4
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
116 |
114 115
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
117 |
28 1 92
|
latmlem1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑠 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ 𝑠 ) ≤ ( 𝑃 ∨ 𝑉 ) → ( ( 𝑃 ∨ 𝑠 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ ( ( 𝑃 ∨ 𝑉 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
118 |
104 113 108 116 117
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑠 ) ≤ ( 𝑃 ∨ 𝑉 ) → ( ( 𝑃 ∨ 𝑠 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ ( ( 𝑃 ∨ 𝑉 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
119 |
111 118
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑠 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ ( ( 𝑃 ∨ 𝑉 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
120 |
1 2 92 3 4
|
lhpat4N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑉 ) ( meet ‘ 𝐾 ) 𝑊 ) = 𝑉 ) |
121 |
120
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑉 ) ( meet ‘ 𝐾 ) 𝑊 ) = 𝑉 ) |
122 |
119 121
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑠 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑉 ) |
123 |
122
|
3adant3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( ( 𝑃 ∨ 𝑠 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑉 ) |
124 |
98 123
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑉 ) |
125 |
89 124
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑠 ) ) → ( 𝐹 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑉 ) ) |
126 |
88 125
|
mpd3an3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑃 ∨ 𝑉 ) ∧ ¬ 𝑠 ≤ 𝑊 ) ) ) → ( 𝐹 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑉 ) ) |
127 |
79 126
|
sylan2b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑠 ∈ 𝐶 ) → ( 𝐹 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑉 ) ) |
128 |
127
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑠 ∈ 𝐶 → ( 𝐹 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑉 ) ) ) |
129 |
|
eleq1 |
⊢ ( 𝐹 = 𝑔 → ( 𝐹 ∈ 𝑇 ↔ 𝑔 ∈ 𝑇 ) ) |
130 |
|
fveq2 |
⊢ ( 𝐹 = 𝑔 → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑔 ) ) |
131 |
130
|
breq1d |
⊢ ( 𝐹 = 𝑔 → ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑉 ↔ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) |
132 |
129 131
|
anbi12d |
⊢ ( 𝐹 = 𝑔 → ( ( 𝐹 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑉 ) ↔ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) ) |
133 |
132
|
biimpcd |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑉 ) → ( 𝐹 = 𝑔 → ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) ) |
134 |
128 133
|
syl6 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑠 ∈ 𝐶 → ( 𝐹 = 𝑔 → ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) ) ) |
135 |
134
|
rexlimdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ∃ 𝑠 ∈ 𝐶 𝐹 = 𝑔 → ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) ) |
136 |
74 135
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ↔ ∃ 𝑠 ∈ 𝐶 𝐹 = 𝑔 ) ) |
137 |
22 136
|
bitr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ∃ 𝑠 ∈ 𝐶 ( 𝐺 ‘ 𝑠 ) = 𝑔 ↔ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) ) |
138 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑅 ‘ 𝑓 ) = ( 𝑅 ‘ 𝑔 ) ) |
139 |
138
|
breq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ↔ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) |
140 |
139
|
elrab |
⊢ ( 𝑔 ∈ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 } ↔ ( 𝑔 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑉 ) ) |
141 |
137 140
|
bitr4di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ∃ 𝑠 ∈ 𝐶 ( 𝐺 ‘ 𝑠 ) = 𝑔 ↔ 𝑔 ∈ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 } ) ) |
142 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
143 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
144 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ∈ 𝐴 ) |
145 |
144 48
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
146 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ≤ 𝑊 ) |
147 |
28 1 4 5 6 7
|
diaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑉 ) = { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 } ) |
148 |
142 143 145 146 147
|
syl22anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑉 ) = { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 } ) |
149 |
148
|
eleq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑔 ∈ ( 𝐼 ‘ 𝑉 ) ↔ 𝑔 ∈ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 } ) ) |
150 |
141 149
|
bitr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( ∃ 𝑠 ∈ 𝐶 ( 𝐺 ‘ 𝑠 ) = 𝑔 ↔ 𝑔 ∈ ( 𝐼 ‘ 𝑉 ) ) ) |
151 |
14 150
|
syl5bb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑔 ∈ ran 𝐺 ↔ 𝑔 ∈ ( 𝐼 ‘ 𝑉 ) ) ) |
152 |
151
|
eqrdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ran 𝐺 = ( 𝐼 ‘ 𝑉 ) ) |