Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemm10.l |
|
2 |
|
cdlemm10.j |
|
3 |
|
cdlemm10.a |
|
4 |
|
cdlemm10.h |
|
5 |
|
cdlemm10.t |
|
6 |
|
cdlemm10.r |
|
7 |
|
cdlemm10.i |
|
8 |
|
cdlemm10.c |
|
9 |
|
cdlemm10.f |
|
10 |
|
cdlemm10.g |
|
11 |
|
riotaex |
|
12 |
11 10
|
fnmpti |
|
13 |
|
fvelrnb |
|
14 |
12 13
|
ax-mp |
|
15 |
|
eqeq2 |
|
16 |
15
|
riotabidv |
|
17 |
|
riotaex |
|
18 |
16 10 17
|
fvmpt |
|
19 |
18 9
|
eqtr4di |
|
20 |
19
|
adantl |
|
21 |
20
|
eqeq1d |
|
22 |
21
|
rexbidva |
|
23 |
|
simpl1 |
|
24 |
|
simprl |
|
25 |
|
simpl2l |
|
26 |
1 3 4 5
|
ltrnat |
|
27 |
23 24 25 26
|
syl3anc |
|
28 |
|
eqid |
|
29 |
|
simpl1l |
|
30 |
29
|
hllatd |
|
31 |
28 3
|
atbase |
|
32 |
25 31
|
syl |
|
33 |
28 4 5
|
ltrncl |
|
34 |
23 24 32 33
|
syl3anc |
|
35 |
28 2
|
latjcl |
|
36 |
30 32 34 35
|
syl3anc |
|
37 |
|
simpl3l |
|
38 |
28 2 3
|
hlatjcl |
|
39 |
29 25 37 38
|
syl3anc |
|
40 |
28 1 2
|
latlej2 |
|
41 |
30 32 34 40
|
syl3anc |
|
42 |
|
simpl2 |
|
43 |
1 2 3 4 5 6
|
trljat1 |
|
44 |
23 24 42 43
|
syl3anc |
|
45 |
|
simprr |
|
46 |
28 4 5 6
|
trlcl |
|
47 |
23 24 46
|
syl2anc |
|
48 |
28 3
|
atbase |
|
49 |
37 48
|
syl |
|
50 |
28 1 2
|
latjlej2 |
|
51 |
30 47 49 32 50
|
syl13anc |
|
52 |
45 51
|
mpd |
|
53 |
44 52
|
eqbrtrrd |
|
54 |
28 1 30 34 36 39 41 53
|
lattrd |
|
55 |
1 3 4 5
|
ltrnel |
|
56 |
55
|
simprd |
|
57 |
23 24 42 56
|
syl3anc |
|
58 |
54 57
|
jca |
|
59 |
|
breq1 |
|
60 |
|
breq1 |
|
61 |
60
|
notbid |
|
62 |
59 61
|
anbi12d |
|
63 |
62 8
|
elrab2 |
|
64 |
27 58 63
|
sylanbrc |
|
65 |
1 3 4 5
|
cdlemeiota |
|
66 |
23 42 24 65
|
syl3anc |
|
67 |
66
|
eqcomd |
|
68 |
|
eqeq2 |
|
69 |
68
|
riotabidv |
|
70 |
9 69
|
eqtrid |
|
71 |
70
|
eqeq1d |
|
72 |
71
|
rspcev |
|
73 |
64 67 72
|
syl2anc |
|
74 |
73
|
ex |
|
75 |
|
breq1 |
|
76 |
|
breq1 |
|
77 |
76
|
notbid |
|
78 |
75 77
|
anbi12d |
|
79 |
78 8
|
elrab2 |
|
80 |
|
simpl1 |
|
81 |
|
simpl2l |
|
82 |
|
simpl2r |
|
83 |
|
simprl |
|
84 |
|
simprrr |
|
85 |
1 3 4 5 9
|
ltrniotacl |
|
86 |
1 3 4 5 9
|
ltrniotaval |
|
87 |
85 86
|
jca |
|
88 |
80 81 82 83 84 87
|
syl122anc |
|
89 |
|
simp3l |
|
90 |
|
simp11 |
|
91 |
|
simp12 |
|
92 |
|
eqid |
|
93 |
1 2 92 3 4 5 6
|
trlval2 |
|
94 |
90 89 91 93
|
syl3anc |
|
95 |
|
simp3r |
|
96 |
95
|
oveq2d |
|
97 |
96
|
oveq1d |
|
98 |
94 97
|
eqtrd |
|
99 |
|
simpl1l |
|
100 |
|
simpl3l |
|
101 |
1 2 3
|
hlatlej1 |
|
102 |
99 81 100 101
|
syl3anc |
|
103 |
|
simprrl |
|
104 |
99
|
hllatd |
|
105 |
81 31
|
syl |
|
106 |
28 3
|
atbase |
|
107 |
106
|
ad2antrl |
|
108 |
99 81 100 38
|
syl3anc |
|
109 |
28 1 2
|
latjle12 |
|
110 |
104 105 107 108 109
|
syl13anc |
|
111 |
102 103 110
|
mpbi2and |
|
112 |
28 2 3
|
hlatjcl |
|
113 |
99 81 83 112
|
syl3anc |
|
114 |
|
simpl1r |
|
115 |
28 4
|
lhpbase |
|
116 |
114 115
|
syl |
|
117 |
28 1 92
|
latmlem1 |
|
118 |
104 113 108 116 117
|
syl13anc |
|
119 |
111 118
|
mpd |
|
120 |
1 2 92 3 4
|
lhpat4N |
|
121 |
120
|
adantr |
|
122 |
119 121
|
breqtrd |
|
123 |
122
|
3adant3 |
|
124 |
98 123
|
eqbrtrd |
|
125 |
89 124
|
jca |
|
126 |
88 125
|
mpd3an3 |
|
127 |
79 126
|
sylan2b |
|
128 |
127
|
ex |
|
129 |
|
eleq1 |
|
130 |
|
fveq2 |
|
131 |
130
|
breq1d |
|
132 |
129 131
|
anbi12d |
|
133 |
132
|
biimpcd |
|
134 |
128 133
|
syl6 |
|
135 |
134
|
rexlimdv |
|
136 |
74 135
|
impbid |
|
137 |
22 136
|
bitr4d |
|
138 |
|
fveq2 |
|
139 |
138
|
breq1d |
|
140 |
139
|
elrab |
|
141 |
137 140
|
bitr4di |
|
142 |
|
simp1l |
|
143 |
|
simp1r |
|
144 |
|
simp3l |
|
145 |
144 48
|
syl |
|
146 |
|
simp3r |
|
147 |
28 1 4 5 6 7
|
diaval |
|
148 |
142 143 145 146 147
|
syl22anc |
|
149 |
148
|
eleq2d |
|
150 |
141 149
|
bitr4d |
|
151 |
14 150
|
syl5bb |
|
152 |
151
|
eqrdv |
|