Step |
Hyp |
Ref |
Expression |
1 |
|
cflim2.1 |
⊢ 𝐴 ∈ V |
2 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ) |
3 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
4 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
5 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
6 |
|
sstr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On ) → 𝑦 ⊆ On ) |
7 |
6
|
expcom |
⊢ ( 𝐴 ⊆ On → ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ On ) ) |
8 |
4 5 7
|
3syl |
⊢ ( Lim 𝐴 → ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ On ) ) |
9 |
8
|
imp |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ On ) |
10 |
9
|
3adant3 |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → 𝑦 ⊆ On ) |
11 |
|
ssel2 |
⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → 𝑠 ∈ On ) |
12 |
|
eloni |
⊢ ( 𝑠 ∈ On → Ord 𝑠 ) |
13 |
|
ordirr |
⊢ ( Ord 𝑠 → ¬ 𝑠 ∈ 𝑠 ) |
14 |
11 12 13
|
3syl |
⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → ¬ 𝑠 ∈ 𝑠 ) |
15 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝑠 → ( 𝑠 ∈ 𝑦 → 𝑠 ∈ 𝑠 ) ) |
16 |
15
|
com12 |
⊢ ( 𝑠 ∈ 𝑦 → ( 𝑦 ⊆ 𝑠 → 𝑠 ∈ 𝑠 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → ( 𝑦 ⊆ 𝑠 → 𝑠 ∈ 𝑠 ) ) |
18 |
14 17
|
mtod |
⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → ¬ 𝑦 ⊆ 𝑠 ) |
19 |
10 18
|
sylan |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ¬ 𝑦 ⊆ 𝑠 ) |
20 |
|
simpl2 |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → 𝑦 ⊆ 𝐴 ) |
21 |
|
sstr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑠 ) → 𝑦 ⊆ 𝑠 ) |
22 |
20 21
|
sylan |
⊢ ( ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) ∧ 𝐴 ⊆ 𝑠 ) → 𝑦 ⊆ 𝑠 ) |
23 |
19 22
|
mtand |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ¬ 𝐴 ⊆ 𝑠 ) |
24 |
|
simpl3 |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ∪ 𝑦 = 𝐴 ) |
25 |
24
|
sseq1d |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ( ∪ 𝑦 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠 ) ) |
26 |
23 25
|
mtbird |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ¬ ∪ 𝑦 ⊆ 𝑠 ) |
27 |
|
unissb |
⊢ ( ∪ 𝑦 ⊆ 𝑠 ↔ ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ) |
28 |
26 27
|
sylnib |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ¬ ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ) |
29 |
28
|
nrexdv |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ¬ ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ) |
30 |
|
ssel |
⊢ ( 𝑦 ⊆ On → ( 𝑠 ∈ 𝑦 → 𝑠 ∈ On ) ) |
31 |
|
ssel |
⊢ ( 𝑦 ⊆ On → ( 𝑡 ∈ 𝑦 → 𝑡 ∈ On ) ) |
32 |
|
ontri1 |
⊢ ( ( 𝑡 ∈ On ∧ 𝑠 ∈ On ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑠 ∈ 𝑡 ) ) |
33 |
32
|
ancoms |
⊢ ( ( 𝑠 ∈ On ∧ 𝑡 ∈ On ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑠 ∈ 𝑡 ) ) |
34 |
|
vex |
⊢ 𝑡 ∈ V |
35 |
|
vex |
⊢ 𝑠 ∈ V |
36 |
34 35
|
brcnv |
⊢ ( 𝑡 ◡ E 𝑠 ↔ 𝑠 E 𝑡 ) |
37 |
|
epel |
⊢ ( 𝑠 E 𝑡 ↔ 𝑠 ∈ 𝑡 ) |
38 |
36 37
|
bitri |
⊢ ( 𝑡 ◡ E 𝑠 ↔ 𝑠 ∈ 𝑡 ) |
39 |
38
|
notbii |
⊢ ( ¬ 𝑡 ◡ E 𝑠 ↔ ¬ 𝑠 ∈ 𝑡 ) |
40 |
33 39
|
bitr4di |
⊢ ( ( 𝑠 ∈ On ∧ 𝑡 ∈ On ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑡 ◡ E 𝑠 ) ) |
41 |
40
|
a1i |
⊢ ( 𝑦 ⊆ On → ( ( 𝑠 ∈ On ∧ 𝑡 ∈ On ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑡 ◡ E 𝑠 ) ) ) |
42 |
30 31 41
|
syl2and |
⊢ ( 𝑦 ⊆ On → ( ( 𝑠 ∈ 𝑦 ∧ 𝑡 ∈ 𝑦 ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑡 ◡ E 𝑠 ) ) ) |
43 |
42
|
impl |
⊢ ( ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) ∧ 𝑡 ∈ 𝑦 ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑡 ◡ E 𝑠 ) ) |
44 |
43
|
ralbidva |
⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → ( ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) ) |
45 |
44
|
rexbidva |
⊢ ( 𝑦 ⊆ On → ( ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) ) |
46 |
10 45
|
syl |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ( ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) ) |
47 |
29 46
|
mtbid |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ¬ ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) |
48 |
|
vex |
⊢ 𝑦 ∈ V |
49 |
48
|
a1i |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ∈ V ) |
50 |
|
epweon |
⊢ E We On |
51 |
|
wess |
⊢ ( 𝑦 ⊆ On → ( E We On → E We 𝑦 ) ) |
52 |
50 51
|
mpi |
⊢ ( 𝑦 ⊆ On → E We 𝑦 ) |
53 |
|
weso |
⊢ ( E We 𝑦 → E Or 𝑦 ) |
54 |
52 53
|
syl |
⊢ ( 𝑦 ⊆ On → E Or 𝑦 ) |
55 |
|
cnvso |
⊢ ( E Or 𝑦 ↔ ◡ E Or 𝑦 ) |
56 |
54 55
|
sylib |
⊢ ( 𝑦 ⊆ On → ◡ E Or 𝑦 ) |
57 |
|
onssnum |
⊢ ( ( 𝑦 ∈ V ∧ 𝑦 ⊆ On ) → 𝑦 ∈ dom card ) |
58 |
48 57
|
mpan |
⊢ ( 𝑦 ⊆ On → 𝑦 ∈ dom card ) |
59 |
|
cardid2 |
⊢ ( 𝑦 ∈ dom card → ( card ‘ 𝑦 ) ≈ 𝑦 ) |
60 |
|
ensym |
⊢ ( ( card ‘ 𝑦 ) ≈ 𝑦 → 𝑦 ≈ ( card ‘ 𝑦 ) ) |
61 |
58 59 60
|
3syl |
⊢ ( 𝑦 ⊆ On → 𝑦 ≈ ( card ‘ 𝑦 ) ) |
62 |
|
nnsdom |
⊢ ( ( card ‘ 𝑦 ) ∈ ω → ( card ‘ 𝑦 ) ≺ ω ) |
63 |
|
ensdomtr |
⊢ ( ( 𝑦 ≈ ( card ‘ 𝑦 ) ∧ ( card ‘ 𝑦 ) ≺ ω ) → 𝑦 ≺ ω ) |
64 |
61 62 63
|
syl2an |
⊢ ( ( 𝑦 ⊆ On ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ≺ ω ) |
65 |
|
isfinite |
⊢ ( 𝑦 ∈ Fin ↔ 𝑦 ≺ ω ) |
66 |
64 65
|
sylibr |
⊢ ( ( 𝑦 ⊆ On ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ∈ Fin ) |
67 |
|
wofi |
⊢ ( ( ◡ E Or 𝑦 ∧ 𝑦 ∈ Fin ) → ◡ E We 𝑦 ) |
68 |
56 66 67
|
syl2an2r |
⊢ ( ( 𝑦 ⊆ On ∧ ( card ‘ 𝑦 ) ∈ ω ) → ◡ E We 𝑦 ) |
69 |
10 68
|
sylan |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → ◡ E We 𝑦 ) |
70 |
|
wefr |
⊢ ( ◡ E We 𝑦 → ◡ E Fr 𝑦 ) |
71 |
69 70
|
syl |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → ◡ E Fr 𝑦 ) |
72 |
|
ssidd |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ⊆ 𝑦 ) |
73 |
|
unieq |
⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∪ ∅ ) |
74 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
75 |
73 74
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∅ ) |
76 |
|
eqeq1 |
⊢ ( ∪ 𝑦 = 𝐴 → ( ∪ 𝑦 = ∅ ↔ 𝐴 = ∅ ) ) |
77 |
75 76
|
syl5ib |
⊢ ( ∪ 𝑦 = 𝐴 → ( 𝑦 = ∅ → 𝐴 = ∅ ) ) |
78 |
|
nlim0 |
⊢ ¬ Lim ∅ |
79 |
|
limeq |
⊢ ( 𝐴 = ∅ → ( Lim 𝐴 ↔ Lim ∅ ) ) |
80 |
78 79
|
mtbiri |
⊢ ( 𝐴 = ∅ → ¬ Lim 𝐴 ) |
81 |
77 80
|
syl6 |
⊢ ( ∪ 𝑦 = 𝐴 → ( 𝑦 = ∅ → ¬ Lim 𝐴 ) ) |
82 |
81
|
necon2ad |
⊢ ( ∪ 𝑦 = 𝐴 → ( Lim 𝐴 → 𝑦 ≠ ∅ ) ) |
83 |
82
|
impcom |
⊢ ( ( Lim 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → 𝑦 ≠ ∅ ) |
84 |
83
|
3adant2 |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → 𝑦 ≠ ∅ ) |
85 |
84
|
adantr |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ≠ ∅ ) |
86 |
|
fri |
⊢ ( ( ( 𝑦 ∈ V ∧ ◡ E Fr 𝑦 ) ∧ ( 𝑦 ⊆ 𝑦 ∧ 𝑦 ≠ ∅ ) ) → ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) |
87 |
49 71 72 85 86
|
syl22anc |
⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) |
88 |
47 87
|
mtand |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ¬ ( card ‘ 𝑦 ) ∈ ω ) |
89 |
|
cardon |
⊢ ( card ‘ 𝑦 ) ∈ On |
90 |
|
eloni |
⊢ ( ( card ‘ 𝑦 ) ∈ On → Ord ( card ‘ 𝑦 ) ) |
91 |
|
ordom |
⊢ Ord ω |
92 |
|
ordtri1 |
⊢ ( ( Ord ω ∧ Ord ( card ‘ 𝑦 ) ) → ( ω ⊆ ( card ‘ 𝑦 ) ↔ ¬ ( card ‘ 𝑦 ) ∈ ω ) ) |
93 |
91 92
|
mpan |
⊢ ( Ord ( card ‘ 𝑦 ) → ( ω ⊆ ( card ‘ 𝑦 ) ↔ ¬ ( card ‘ 𝑦 ) ∈ ω ) ) |
94 |
89 90 93
|
mp2b |
⊢ ( ω ⊆ ( card ‘ 𝑦 ) ↔ ¬ ( card ‘ 𝑦 ) ∈ ω ) |
95 |
88 94
|
sylibr |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ω ⊆ ( card ‘ 𝑦 ) ) |
96 |
3 95
|
syl3an2b |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ω ⊆ ( card ‘ 𝑦 ) ) |
97 |
96
|
3expb |
⊢ ( ( Lim 𝐴 ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ) → ω ⊆ ( card ‘ 𝑦 ) ) |
98 |
2 97
|
sylan2b |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ) → ω ⊆ ( card ‘ 𝑦 ) ) |
99 |
98
|
ralrimiva |
⊢ ( Lim 𝐴 → ∀ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ω ⊆ ( card ‘ 𝑦 ) ) |
100 |
|
ssiin |
⊢ ( ω ⊆ ∩ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ( card ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ω ⊆ ( card ‘ 𝑦 ) ) |
101 |
99 100
|
sylibr |
⊢ ( Lim 𝐴 → ω ⊆ ∩ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ( card ‘ 𝑦 ) ) |
102 |
1
|
cflim3 |
⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ( card ‘ 𝑦 ) ) |
103 |
101 102
|
sseqtrrd |
⊢ ( Lim 𝐴 → ω ⊆ ( cf ‘ 𝐴 ) ) |
104 |
|
fvex |
⊢ ( card ‘ 𝑦 ) ∈ V |
105 |
104
|
dfiin2 |
⊢ ∩ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ( card ‘ 𝑦 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } |
106 |
102 105
|
eqtrdi |
⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ) |
107 |
|
cardlim |
⊢ ( ω ⊆ ( card ‘ 𝑦 ) ↔ Lim ( card ‘ 𝑦 ) ) |
108 |
|
sseq2 |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( ω ⊆ 𝑥 ↔ ω ⊆ ( card ‘ 𝑦 ) ) ) |
109 |
|
limeq |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( Lim 𝑥 ↔ Lim ( card ‘ 𝑦 ) ) ) |
110 |
108 109
|
bibi12d |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) ↔ ( ω ⊆ ( card ‘ 𝑦 ) ↔ Lim ( card ‘ 𝑦 ) ) ) ) |
111 |
107 110
|
mpbiri |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) ) |
112 |
111
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) → ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) ) |
113 |
112
|
ss2abi |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ⊆ { 𝑥 ∣ ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) } |
114 |
|
eleq1 |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( 𝑥 ∈ On ↔ ( card ‘ 𝑦 ) ∈ On ) ) |
115 |
89 114
|
mpbiri |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → 𝑥 ∈ On ) |
116 |
115
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) → 𝑥 ∈ On ) |
117 |
116
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ⊆ On |
118 |
|
fvex |
⊢ ( cf ‘ 𝐴 ) ∈ V |
119 |
106 118
|
eqeltrrdi |
⊢ ( Lim 𝐴 → ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ V ) |
120 |
|
intex |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ≠ ∅ ↔ ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ V ) |
121 |
119 120
|
sylibr |
⊢ ( Lim 𝐴 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ≠ ∅ ) |
122 |
|
onint |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ⊆ On ∧ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ≠ ∅ ) → ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ) |
123 |
117 121 122
|
sylancr |
⊢ ( Lim 𝐴 → ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ) |
124 |
113 123
|
sselid |
⊢ ( Lim 𝐴 → ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ { 𝑥 ∣ ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) } ) |
125 |
106 124
|
eqeltrd |
⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) } ) |
126 |
|
sseq2 |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ω ⊆ 𝑥 ↔ ω ⊆ ( cf ‘ 𝐴 ) ) ) |
127 |
|
limeq |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( Lim 𝑥 ↔ Lim ( cf ‘ 𝐴 ) ) ) |
128 |
126 127
|
bibi12d |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) ↔ ( ω ⊆ ( cf ‘ 𝐴 ) ↔ Lim ( cf ‘ 𝐴 ) ) ) ) |
129 |
118 128
|
elab |
⊢ ( ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) } ↔ ( ω ⊆ ( cf ‘ 𝐴 ) ↔ Lim ( cf ‘ 𝐴 ) ) ) |
130 |
125 129
|
sylib |
⊢ ( Lim 𝐴 → ( ω ⊆ ( cf ‘ 𝐴 ) ↔ Lim ( cf ‘ 𝐴 ) ) ) |
131 |
103 130
|
mpbid |
⊢ ( Lim 𝐴 → Lim ( cf ‘ 𝐴 ) ) |
132 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
133 |
|
ordzsl |
⊢ ( Ord 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |
134 |
132 133
|
sylib |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |
135 |
|
df-3or |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ↔ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ∨ Lim 𝐴 ) ) |
136 |
|
orcom |
⊢ ( ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ∨ Lim 𝐴 ) ↔ ( Lim 𝐴 ∨ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
137 |
|
df-or |
⊢ ( ( Lim 𝐴 ∨ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ↔ ( ¬ Lim 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
138 |
135 136 137
|
3bitri |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ↔ ( ¬ Lim 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
139 |
134 138
|
sylib |
⊢ ( 𝐴 ∈ On → ( ¬ Lim 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
140 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( cf ‘ 𝐴 ) = ( cf ‘ ∅ ) ) |
141 |
|
cf0 |
⊢ ( cf ‘ ∅ ) = ∅ |
142 |
140 141
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( cf ‘ 𝐴 ) = ∅ ) |
143 |
|
limeq |
⊢ ( ( cf ‘ 𝐴 ) = ∅ → ( Lim ( cf ‘ 𝐴 ) ↔ Lim ∅ ) ) |
144 |
142 143
|
syl |
⊢ ( 𝐴 = ∅ → ( Lim ( cf ‘ 𝐴 ) ↔ Lim ∅ ) ) |
145 |
78 144
|
mtbiri |
⊢ ( 𝐴 = ∅ → ¬ Lim ( cf ‘ 𝐴 ) ) |
146 |
|
1n0 |
⊢ 1o ≠ ∅ |
147 |
|
df1o2 |
⊢ 1o = { ∅ } |
148 |
147
|
unieqi |
⊢ ∪ 1o = ∪ { ∅ } |
149 |
|
0ex |
⊢ ∅ ∈ V |
150 |
149
|
unisn |
⊢ ∪ { ∅ } = ∅ |
151 |
148 150
|
eqtri |
⊢ ∪ 1o = ∅ |
152 |
146 151
|
neeqtrri |
⊢ 1o ≠ ∪ 1o |
153 |
|
limuni |
⊢ ( Lim 1o → 1o = ∪ 1o ) |
154 |
153
|
necon3ai |
⊢ ( 1o ≠ ∪ 1o → ¬ Lim 1o ) |
155 |
152 154
|
ax-mp |
⊢ ¬ Lim 1o |
156 |
|
fveq2 |
⊢ ( 𝐴 = suc 𝑥 → ( cf ‘ 𝐴 ) = ( cf ‘ suc 𝑥 ) ) |
157 |
|
cfsuc |
⊢ ( 𝑥 ∈ On → ( cf ‘ suc 𝑥 ) = 1o ) |
158 |
156 157
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) → ( cf ‘ 𝐴 ) = 1o ) |
159 |
|
limeq |
⊢ ( ( cf ‘ 𝐴 ) = 1o → ( Lim ( cf ‘ 𝐴 ) ↔ Lim 1o ) ) |
160 |
158 159
|
syl |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) → ( Lim ( cf ‘ 𝐴 ) ↔ Lim 1o ) ) |
161 |
155 160
|
mtbiri |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) → ¬ Lim ( cf ‘ 𝐴 ) ) |
162 |
161
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ Lim ( cf ‘ 𝐴 ) ) |
163 |
145 162
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) → ¬ Lim ( cf ‘ 𝐴 ) ) |
164 |
139 163
|
syl6 |
⊢ ( 𝐴 ∈ On → ( ¬ Lim 𝐴 → ¬ Lim ( cf ‘ 𝐴 ) ) ) |
165 |
164
|
con4d |
⊢ ( 𝐴 ∈ On → ( Lim ( cf ‘ 𝐴 ) → Lim 𝐴 ) ) |
166 |
|
cff |
⊢ cf : On ⟶ On |
167 |
166
|
fdmi |
⊢ dom cf = On |
168 |
167
|
eleq2i |
⊢ ( 𝐴 ∈ dom cf ↔ 𝐴 ∈ On ) |
169 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom cf → ( cf ‘ 𝐴 ) = ∅ ) |
170 |
168 169
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∅ ) |
171 |
170 143
|
syl |
⊢ ( ¬ 𝐴 ∈ On → ( Lim ( cf ‘ 𝐴 ) ↔ Lim ∅ ) ) |
172 |
78 171
|
mtbiri |
⊢ ( ¬ 𝐴 ∈ On → ¬ Lim ( cf ‘ 𝐴 ) ) |
173 |
172
|
pm2.21d |
⊢ ( ¬ 𝐴 ∈ On → ( Lim ( cf ‘ 𝐴 ) → Lim 𝐴 ) ) |
174 |
165 173
|
pm2.61i |
⊢ ( Lim ( cf ‘ 𝐴 ) → Lim 𝐴 ) |
175 |
131 174
|
impbii |
⊢ ( Lim 𝐴 ↔ Lim ( cf ‘ 𝐴 ) ) |