| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2cn.1 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 2 |
|
itg2cn.2 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 3 |
|
itg2cn.3 |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 4 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 5 |
|
c0ex |
⊢ 0 ∈ V |
| 6 |
4 5
|
ifex |
⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 8 |
7
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 9 |
6 8
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 10 |
9
|
mpteq2dv |
⊢ ( 𝑥 ∈ ℝ → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 11 |
10
|
rneqd |
⊢ ( 𝑥 ∈ ℝ → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 12 |
11
|
supeq1d |
⊢ ( 𝑥 ∈ ℝ → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
| 13 |
12
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑦 sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑥 ℕ |
| 16 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 17 |
15 16
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
| 19 |
17 18
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 21 |
19 20
|
nffv |
⊢ Ⅎ 𝑥 ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) |
| 22 |
15 21
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 23 |
22
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 26 |
23 24 25
|
nfsup |
⊢ Ⅎ 𝑥 sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 28 |
27
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) ) |
| 29 |
|
breq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 30 |
29
|
ifbid |
⊢ ( 𝑛 = 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 31 |
30
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 32 |
31
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 33 |
32
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 34 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 35 |
|
reex |
⊢ ℝ ∈ V |
| 36 |
35
|
mptex |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ V |
| 37 |
31 34 36
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 38 |
37
|
fveq1d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 39 |
38
|
mpteq2ia |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 40 |
33 39
|
eqtr4i |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 41 |
28 40
|
eqtrdi |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 42 |
41
|
rneqd |
⊢ ( 𝑥 = 𝑦 → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 43 |
42
|
supeq1d |
⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 44 |
14 26 43
|
cbvmpt |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑥 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 45 |
13 44
|
eqtr3i |
⊢ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = ( 𝑦 ∈ ℝ ↦ sup ( ran ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 46 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 47 |
46
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 48 |
47 46
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 49 |
48
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 50 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 51 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
| 52 |
51
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑚 ∈ ℝ ) |
| 53 |
52
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑚 ∈ ℝ* ) |
| 54 |
|
elioopnf |
⊢ ( 𝑚 ∈ ℝ* → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 56 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 57 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn ℝ ) |
| 59 |
|
elpreima |
⊢ ( 𝐹 Fn ℝ → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) ) |
| 61 |
56 60
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑚 (,) +∞ ) ) ) |
| 62 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 63 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 64 |
1 62 63
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 66 |
65
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 67 |
66
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑚 < ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 68 |
55 61 67
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 69 |
68
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ↔ ¬ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 70 |
|
eldif |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 71 |
70
|
baib |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ¬ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 73 |
66 52
|
lenltd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ↔ ¬ 𝑚 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 74 |
69 72 73
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 75 |
74
|
ifbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) |
| 76 |
75
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
| 77 |
49 50 76
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ) |
| 78 |
|
difss |
⊢ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ |
| 79 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ ) |
| 80 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 81 |
80
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ dom vol ) |
| 82 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
| 83 |
82 5
|
ifex |
⊢ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V |
| 84 |
83
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ∈ V ) |
| 85 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) → ¬ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 86 |
85
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ) → ¬ 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 87 |
86
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ( ℝ ∖ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = 0 ) |
| 88 |
|
iftrue |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) → if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 89 |
88
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) |
| 90 |
|
resmpt |
⊢ ( ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ⊆ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 91 |
78 90
|
ax-mp |
⊢ ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) = ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ ( 𝐹 ‘ 𝑦 ) ) |
| 92 |
89 91
|
eqtr4i |
⊢ ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) |
| 93 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 94 |
93 2
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ) |
| 95 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol ) |
| 96 |
2 64 95
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol ) |
| 97 |
|
cmmbl |
⊢ ( ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ∈ dom vol → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) |
| 98 |
96 97
|
syl |
⊢ ( 𝜑 → ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) |
| 99 |
|
mbfres |
⊢ ( ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ MblFn ∧ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ∈ dom vol ) → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ∈ MblFn ) |
| 100 |
94 98 99
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ) ∈ MblFn ) |
| 101 |
92 100
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 103 |
79 81 84 87 102
|
mbfss |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( ℝ ∖ ( ◡ 𝐹 “ ( 𝑚 (,) +∞ ) ) ) , ( 𝐹 ‘ 𝑦 ) , 0 ) ) ∈ MblFn ) |
| 104 |
77 103
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ∈ MblFn ) |
| 105 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 106 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 107 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ∧ 0 ∈ ( 0 [,) +∞ ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 108 |
105 106 107
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 109 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 110 |
50 109
|
fmpt3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 111 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 112 |
105 111
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 113 |
112
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 114 |
113
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 115 |
114
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 116 |
115
|
leidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 117 |
|
iftrue |
⊢ ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 118 |
117
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 119 |
51
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 𝑚 ∈ ℝ ) |
| 120 |
|
peano2re |
⊢ ( 𝑚 ∈ ℝ → ( 𝑚 + 1 ) ∈ ℝ ) |
| 121 |
119 120
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝑚 + 1 ) ∈ ℝ ) |
| 122 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) |
| 123 |
119
|
lep1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 𝑚 ≤ ( 𝑚 + 1 ) ) |
| 124 |
115 119 121 122 123
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) ) |
| 125 |
124
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 126 |
116 118 125
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 127 |
|
iffalse |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 ) |
| 128 |
127
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 ) |
| 129 |
112
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 130 |
|
0le0 |
⊢ 0 ≤ 0 |
| 131 |
|
breq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 132 |
|
breq2 |
⊢ ( 0 = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 133 |
131 132
|
ifboth |
⊢ ( ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 134 |
129 130 133
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 135 |
134
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 136 |
135
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → 0 ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 137 |
128 136
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 138 |
126 137
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 139 |
138
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 140 |
4 5
|
ifex |
⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 141 |
140
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 142 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 143 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 144 |
81 109 141 142 143
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 145 |
139 144
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 146 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
| 147 |
146
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 148 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) ) ) |
| 149 |
148
|
ifbid |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 150 |
149
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 151 |
35
|
mptex |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ V |
| 152 |
150 34 151
|
fvmpt |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 153 |
147 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝑚 + 1 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 154 |
145 50 153
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ∘r ≤ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ ( 𝑚 + 1 ) ) ) |
| 155 |
64
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 156 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 157 |
156
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 158 |
113
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 159 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 160 |
|
breq1 |
⊢ ( 0 = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 161 |
159 160
|
ifboth |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 162 |
158 129 161
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 163 |
162
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 164 |
163
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 165 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ V ) |
| 166 |
4 5
|
ifex |
⊢ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 167 |
166
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 168 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 170 |
165 167 114 142 169
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 171 |
164 170
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ) |
| 172 |
167
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℝ ⟶ V ) |
| 173 |
172
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
| 174 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 Fn ℝ ) |
| 175 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 176 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ) |
| 177 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 178 |
173 174 165 165 175 176 177
|
ofrfval |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 179 |
171 178
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 180 |
179
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 181 |
180
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 182 |
157 181
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 183 |
182
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 184 |
|
brralrspcev |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 185 |
155 183 184
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑚 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ‘ 𝑦 ) ≤ 𝑧 ) |
| 186 |
31
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 187 |
186
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 188 |
37
|
fveq2d |
⊢ ( 𝑚 ∈ ℕ → ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 189 |
188
|
mpteq2ia |
⊢ ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
| 190 |
187 189
|
eqtr4i |
⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) |
| 191 |
190
|
rneqi |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) = ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) |
| 192 |
191
|
supeq1i |
⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ℕ ↦ ( ∫2 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑚 ) ) ) , ℝ* , < ) |
| 193 |
45 104 110 154 185 192
|
itg2mono |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) ) |
| 194 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 195 |
30 194 166
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 196 |
195
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 197 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 198 |
196 197
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 199 |
198
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 200 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 201 |
200
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℕ ⟶ V ) |
| 202 |
201
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ) |
| 203 |
|
breq1 |
⊢ ( 𝑤 = ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) → ( 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 204 |
203
|
ralrn |
⊢ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ → ( ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 205 |
202 204
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 206 |
199 205
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 207 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 208 |
|
0re |
⊢ 0 ∈ ℝ |
| 209 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
| 210 |
207 208 209
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ℝ ) |
| 211 |
210
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) : ℕ ⟶ ℝ ) |
| 212 |
211
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ⊆ ℝ ) |
| 213 |
|
1nn |
⊢ 1 ∈ ℕ |
| 214 |
194 210
|
dmmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ℕ ) |
| 215 |
213 214
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 216 |
|
n0i |
⊢ ( 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) → ¬ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ) |
| 217 |
|
dm0rn0 |
⊢ ( dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ) |
| 218 |
217
|
necon3bbii |
⊢ ( ¬ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
| 219 |
216 218
|
sylib |
⊢ ( 1 ∈ dom ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
| 220 |
215 219
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ) |
| 221 |
|
brralrspcev |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) |
| 222 |
113 206 221
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) |
| 223 |
|
suprleub |
⊢ ( ( ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ 𝑧 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 224 |
212 220 222 113 223
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) 𝑤 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 225 |
206 224
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 226 |
|
arch |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) |
| 227 |
113 226
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) |
| 228 |
195
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 229 |
|
ltle |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑚 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 230 |
113 51 229
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑚 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 231 |
230
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) |
| 232 |
231
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 233 |
228 232
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 234 |
202
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ) |
| 235 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → 𝑚 ∈ ℕ ) |
| 236 |
|
fnfvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 237 |
234 235 236
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 238 |
233 237
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑚 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 239 |
227 238
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
| 240 |
212 220 222 239
|
suprubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) |
| 241 |
212 220 222
|
suprcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ∈ ℝ ) |
| 242 |
241 113
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑥 ) ↔ ( sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) ) |
| 243 |
225 240 242
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) = ( 𝐹 ‘ 𝑥 ) ) |
| 244 |
243
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 245 |
244 168
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) = 𝐹 ) |
| 246 |
245
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) , ℝ , < ) ) ) = ( ∫2 ‘ 𝐹 ) ) |
| 247 |
193 246
|
eqtr3d |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑛 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) , ℝ* , < ) = ( ∫2 ‘ 𝐹 ) ) |