Metamath Proof Explorer


Theorem noinfbnd2

Description: Bounding law from below for the surreal infimum. Analagous to proposition 4.3 of Lipparini p. 6. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfbnd2.1 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
Assertion noinfbnd2 ( ( 𝐵 No 𝐵𝑉𝑍 No ) → ( ∀ 𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 noinfbnd2.1 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 nfv 𝑥 ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 )
3 nfre1 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥
4 nfriota1 𝑥 ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
5 4 nfdm 𝑥 dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
6 nfcv 𝑥 1o
7 5 6 nfop 𝑥 ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o
8 7 nfsn 𝑥 { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ }
9 4 8 nfun 𝑥 ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } )
10 nfcv 𝑥 { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) }
11 nfiota1 𝑥 ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) )
12 10 11 nfmpt 𝑥 ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) )
13 3 9 12 nfif 𝑥 if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
14 1 13 nfcxfr 𝑥 𝑇
15 nfcv 𝑥 <s
16 nfcv 𝑥 𝑍
17 14 nfdm 𝑥 dom 𝑇
18 16 17 nfres 𝑥 ( 𝑍 ↾ dom 𝑇 )
19 14 15 18 nfbr 𝑥 𝑇 <s ( 𝑍 ↾ dom 𝑇 )
20 19 nfn 𝑥 ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 )
21 2 20 nfim 𝑥 ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) )
22 noinfbnd2lem1 ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) → ¬ ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } ) <s ( 𝑍 ↾ suc dom 𝑥 ) )
23 22 3expb ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ¬ ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } ) <s ( 𝑍 ↾ suc dom 𝑥 ) )
24 rspe ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
25 24 adantr ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
26 25 iftrued ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) = ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) )
27 simpl ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) )
28 simprl1 ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → 𝐵 No )
29 nominmo ( 𝐵 No → ∃* 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
30 28 29 syl ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ∃* 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
31 reu5 ( ∃! 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃* 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) )
32 25 30 31 sylanbrc ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ∃! 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
33 riota1 ( ∃! 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ↔ ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) = 𝑥 ) )
34 32 33 syl ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ↔ ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) = 𝑥 ) )
35 27 34 mpbid ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) = 𝑥 )
36 35 dmeqd ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) = dom 𝑥 )
37 36 opeq1d ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ = ⟨ dom 𝑥 , 1o ⟩ )
38 37 sneqd ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } = { ⟨ dom 𝑥 , 1o ⟩ } )
39 35 38 uneq12d ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) = ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } ) )
40 26 39 eqtrd ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) ) = ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } ) )
41 1 40 eqtrid ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → 𝑇 = ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } ) )
42 41 dmeqd ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → dom 𝑇 = dom ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } ) )
43 1oex 1o ∈ V
44 43 dmsnop dom { ⟨ dom 𝑥 , 1o ⟩ } = { dom 𝑥 }
45 44 uneq2i ( dom 𝑥 ∪ dom { ⟨ dom 𝑥 , 1o ⟩ } ) = ( dom 𝑥 ∪ { dom 𝑥 } )
46 dmun dom ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } ) = ( dom 𝑥 ∪ dom { ⟨ dom 𝑥 , 1o ⟩ } )
47 df-suc suc dom 𝑥 = ( dom 𝑥 ∪ { dom 𝑥 } )
48 45 46 47 3eqtr4ri suc dom 𝑥 = dom ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } )
49 42 48 eqtr4di ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → dom 𝑇 = suc dom 𝑥 )
50 49 reseq2d ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑍 ↾ dom 𝑇 ) = ( 𝑍 ↾ suc dom 𝑥 ) )
51 41 50 breq12d ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ↔ ( 𝑥 ∪ { ⟨ dom 𝑥 , 1o ⟩ } ) <s ( 𝑍 ↾ suc dom 𝑥 ) ) )
52 23 51 mtbird ( ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) )
53 52 exp31 ( 𝑥𝐵 → ( ∀ 𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ) )
54 21 53 rexlimi ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) )
55 54 imp ( ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) )
56 simprl3 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → 𝑍 No )
57 1 noinfno ( ( 𝐵 No 𝐵𝑉 ) → 𝑇 No )
58 57 3adant3 ( ( 𝐵 No 𝐵𝑉𝑍 No ) → 𝑇 No )
59 58 ad2antrl ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → 𝑇 No )
60 nodmon ( 𝑇 No → dom 𝑇 ∈ On )
61 59 60 syl ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → dom 𝑇 ∈ On )
62 noreson ( ( 𝑍 No ∧ dom 𝑇 ∈ On ) → ( 𝑍 ↾ dom 𝑇 ) ∈ No )
63 56 61 62 syl2anc ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑍 ↾ dom 𝑇 ) ∈ No )
64 nofun ( 𝑇 No → Fun 𝑇 )
65 funrel ( Fun 𝑇 → Rel 𝑇 )
66 58 64 65 3syl ( ( 𝐵 No 𝐵𝑉𝑍 No ) → Rel 𝑇 )
67 66 ad2antrl ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → Rel 𝑇 )
68 resdm ( Rel 𝑇 → ( 𝑇 ↾ dom 𝑇 ) = 𝑇 )
69 67 68 syl ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑇 ↾ dom 𝑇 ) = 𝑇 )
70 69 59 eqeltrd ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑇 ↾ dom 𝑇 ) ∈ No )
71 resdmss dom ( 𝑍 ↾ dom 𝑇 ) ⊆ dom 𝑇
72 71 a1i ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → dom ( 𝑍 ↾ dom 𝑇 ) ⊆ dom 𝑇 )
73 resdmss dom ( 𝑇 ↾ dom 𝑇 ) ⊆ dom 𝑇
74 73 a1i ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → dom ( 𝑇 ↾ dom 𝑇 ) ⊆ dom 𝑇 )
75 1 noinfdm ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { 𝑔 ∣ ∃ 𝑝𝐵 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) } )
76 75 abeq2d ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → ( 𝑔 ∈ dom 𝑇 ↔ ∃ 𝑝𝐵 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) )
77 76 adantr ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑔 ∈ dom 𝑇 ↔ ∃ 𝑝𝐵 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) )
78 simpll ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
79 simprl1 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → 𝐵 No )
80 79 adantr ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝐵 No )
81 simprl2 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → 𝐵𝑉 )
82 81 adantr ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝐵𝑉 )
83 simprl ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑝𝐵 )
84 simprrl ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑔 ∈ dom 𝑝 )
85 simprrr ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) )
86 breq2 ( 𝑞 = 𝑣 → ( 𝑝 <s 𝑞𝑝 <s 𝑣 ) )
87 86 notbid ( 𝑞 = 𝑣 → ( ¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣 ) )
88 reseq1 ( 𝑞 = 𝑣 → ( 𝑞 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) )
89 88 eqeq2d ( 𝑞 = 𝑣 → ( ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ↔ ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) )
90 87 89 imbi12d ( 𝑞 = 𝑣 → ( ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ↔ ( ¬ 𝑝 <s 𝑣 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) )
91 90 cbvralvw ( ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ↔ ∀ 𝑣𝐵 ( ¬ 𝑝 <s 𝑣 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) )
92 85 91 sylib ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑣𝐵 ( ¬ 𝑝 <s 𝑣 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) )
93 1 noinfres ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ ( 𝑝𝐵𝑔 ∈ dom 𝑝 ∧ ∀ 𝑣𝐵 ( ¬ 𝑝 <s 𝑣 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ( 𝑇 ↾ suc 𝑔 ) = ( 𝑝 ↾ suc 𝑔 ) )
94 78 80 82 83 84 92 93 syl123anc ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( 𝑇 ↾ suc 𝑔 ) = ( 𝑝 ↾ suc 𝑔 ) )
95 breq2 ( 𝑏 = 𝑝 → ( 𝑍 <s 𝑏𝑍 <s 𝑝 ) )
96 simplrr ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑏𝐵 𝑍 <s 𝑏 )
97 95 96 83 rspcdva ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑍 <s 𝑝 )
98 56 adantr ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑍 No )
99 80 83 sseldd ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑝 No )
100 sltso <s Or No
101 soasym ( ( <s Or No ∧ ( 𝑍 No 𝑝 No ) ) → ( 𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍 ) )
102 100 101 mpan ( ( 𝑍 No 𝑝 No ) → ( 𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍 ) )
103 98 99 102 syl2anc ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( 𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍 ) )
104 97 103 mpd ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ 𝑝 <s 𝑍 )
105 nodmon ( 𝑝 No → dom 𝑝 ∈ On )
106 99 105 syl ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → dom 𝑝 ∈ On )
107 onelon ( ( dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝 ) → 𝑔 ∈ On )
108 106 84 107 syl2anc ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑔 ∈ On )
109 sucelon ( 𝑔 ∈ On ↔ suc 𝑔 ∈ On )
110 108 109 sylib ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → suc 𝑔 ∈ On )
111 sltres ( ( 𝑝 No 𝑍 No ∧ suc 𝑔 ∈ On ) → ( ( 𝑝 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) → 𝑝 <s 𝑍 ) )
112 99 98 110 111 syl3anc ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( ( 𝑝 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) → 𝑝 <s 𝑍 ) )
113 104 112 mtod ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ( 𝑝 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) )
114 94 113 eqnbrtrd ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) )
115 114 rexlimdvaa ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( ∃ 𝑝𝐵 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) → ¬ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) )
116 77 115 sylbid ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑔 ∈ dom 𝑇 → ¬ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) )
117 116 imp ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ¬ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) )
118 nodmord ( 𝑇 No → Ord dom 𝑇 )
119 ordsucss ( Ord dom 𝑇 → ( 𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇 ) )
120 59 118 119 3syl ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( 𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇 ) )
121 120 imp ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → suc 𝑔 ⊆ dom 𝑇 )
122 121 resabs1d ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) = ( 𝑇 ↾ suc 𝑔 ) )
123 121 resabs1d ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) = ( 𝑍 ↾ suc 𝑔 ) )
124 122 123 breq12d ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ( ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) <s ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) ↔ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) )
125 117 124 mtbird ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ¬ ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) <s ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) )
126 125 ralrimiva ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ∀ 𝑔 ∈ dom 𝑇 ¬ ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) <s ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) )
127 noresle ( ( ( ( 𝑍 ↾ dom 𝑇 ) ∈ No ∧ ( 𝑇 ↾ dom 𝑇 ) ∈ No ) ∧ ( dom ( 𝑍 ↾ dom 𝑇 ) ⊆ dom 𝑇 ∧ dom ( 𝑇 ↾ dom 𝑇 ) ⊆ dom 𝑇 ∧ ∀ 𝑔 ∈ dom 𝑇 ¬ ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) <s ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) ) ) → ¬ ( 𝑇 ↾ dom 𝑇 ) <s ( 𝑍 ↾ dom 𝑇 ) )
128 63 70 72 74 126 127 syl23anc ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ¬ ( 𝑇 ↾ dom 𝑇 ) <s ( 𝑍 ↾ dom 𝑇 ) )
129 69 breq1d ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ( ( 𝑇 ↾ dom 𝑇 ) <s ( 𝑍 ↾ dom 𝑇 ) ↔ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) )
130 128 129 mtbid ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) )
131 55 130 pm2.61ian ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀ 𝑏𝐵 𝑍 <s 𝑏 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) )
132 simplr ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) )
133 simpll1 ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → 𝐵 No )
134 simpll2 ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → 𝐵𝑉 )
135 simpr ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → 𝑏𝐵 )
136 1 noinfbnd1 ( ( 𝐵 No 𝐵𝑉𝑏𝐵 ) → 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) )
137 133 134 135 136 syl3anc ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) )
138 simpl3 ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → 𝑍 No )
139 simpl1 ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → 𝐵 No )
140 simpl2 ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → 𝐵𝑉 )
141 139 140 57 syl2anc ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → 𝑇 No )
142 141 60 syl ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → dom 𝑇 ∈ On )
143 138 142 62 syl2anc ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → ( 𝑍 ↾ dom 𝑇 ) ∈ No )
144 143 adantr ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → ( 𝑍 ↾ dom 𝑇 ) ∈ No )
145 141 adantr ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → 𝑇 No )
146 139 sselda ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → 𝑏 No )
147 142 adantr ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → dom 𝑇 ∈ On )
148 noreson ( ( 𝑏 No ∧ dom 𝑇 ∈ On ) → ( 𝑏 ↾ dom 𝑇 ) ∈ No )
149 146 147 148 syl2anc ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → ( 𝑏 ↾ dom 𝑇 ) ∈ No )
150 sotr2 ( ( <s Or No ∧ ( ( 𝑍 ↾ dom 𝑇 ) ∈ No 𝑇 No ∧ ( 𝑏 ↾ dom 𝑇 ) ∈ No ) ) → ( ( ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ∧ 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) ) → ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) ) )
151 100 150 mpan ( ( ( 𝑍 ↾ dom 𝑇 ) ∈ No 𝑇 No ∧ ( 𝑏 ↾ dom 𝑇 ) ∈ No ) → ( ( ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ∧ 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) ) → ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) ) )
152 144 145 149 151 syl3anc ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → ( ( ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ∧ 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) ) → ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) ) )
153 132 137 152 mp2and ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) )
154 simpll3 ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → 𝑍 No )
155 sltres ( ( 𝑍 No 𝑏 No ∧ dom 𝑇 ∈ On ) → ( ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) → 𝑍 <s 𝑏 ) )
156 154 146 147 155 syl3anc ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → ( ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) → 𝑍 <s 𝑏 ) )
157 153 156 mpd ( ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏𝐵 ) → 𝑍 <s 𝑏 )
158 157 ralrimiva ( ( ( 𝐵 No 𝐵𝑉𝑍 No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → ∀ 𝑏𝐵 𝑍 <s 𝑏 )
159 131 158 impbida ( ( 𝐵 No 𝐵𝑉𝑍 No ) → ( ∀ 𝑏𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) )