Step |
Hyp |
Ref |
Expression |
1 |
|
noinfbnd2.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) |
3 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 |
4 |
|
nfriota1 |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
5 |
4
|
nfdm |
⊢ Ⅎ 𝑥 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 1o |
7 |
5 6
|
nfop |
⊢ Ⅎ 𝑥 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 |
8 |
7
|
nfsn |
⊢ Ⅎ 𝑥 { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } |
9 |
4 8
|
nfun |
⊢ Ⅎ 𝑥 ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } |
11 |
|
nfiota1 |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) |
12 |
10 11
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) |
13 |
3 9 12
|
nfif |
⊢ Ⅎ 𝑥 if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
14 |
1 13
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑇 |
15 |
|
nfcv |
⊢ Ⅎ 𝑥 <s |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
17 |
14
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝑇 |
18 |
16 17
|
nfres |
⊢ Ⅎ 𝑥 ( 𝑍 ↾ dom 𝑇 ) |
19 |
14 15 18
|
nfbr |
⊢ Ⅎ 𝑥 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) |
20 |
19
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) |
21 |
2 20
|
nfim |
⊢ Ⅎ 𝑥 ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) |
22 |
|
noinfbnd2lem1 |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ¬ ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑥 ) ) |
23 |
22
|
3expb |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ¬ ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑥 ) ) |
24 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
26 |
25
|
iftrued |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) ) |
27 |
|
simpl |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) |
28 |
|
simprl1 |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → 𝐵 ⊆ No ) |
29 |
|
nominmo |
⊢ ( 𝐵 ⊆ No → ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
30 |
28 29
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
31 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ) |
32 |
25 30 31
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
33 |
|
riota1 |
⊢ ( ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ↔ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) = 𝑥 ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ↔ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) = 𝑥 ) ) |
35 |
27 34
|
mpbid |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) = 𝑥 ) |
36 |
35
|
dmeqd |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) = dom 𝑥 ) |
37 |
36
|
opeq1d |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 = 〈 dom 𝑥 , 1o 〉 ) |
38 |
37
|
sneqd |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } = { 〈 dom 𝑥 , 1o 〉 } ) |
39 |
35 38
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) = ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) ) |
40 |
26 39
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) ) |
41 |
1 40
|
syl5eq |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → 𝑇 = ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) ) |
42 |
41
|
dmeqd |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → dom 𝑇 = dom ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) ) |
43 |
|
1oex |
⊢ 1o ∈ V |
44 |
43
|
dmsnop |
⊢ dom { 〈 dom 𝑥 , 1o 〉 } = { dom 𝑥 } |
45 |
44
|
uneq2i |
⊢ ( dom 𝑥 ∪ dom { 〈 dom 𝑥 , 1o 〉 } ) = ( dom 𝑥 ∪ { dom 𝑥 } ) |
46 |
|
dmun |
⊢ dom ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) = ( dom 𝑥 ∪ dom { 〈 dom 𝑥 , 1o 〉 } ) |
47 |
|
df-suc |
⊢ suc dom 𝑥 = ( dom 𝑥 ∪ { dom 𝑥 } ) |
48 |
45 46 47
|
3eqtr4ri |
⊢ suc dom 𝑥 = dom ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) |
49 |
42 48
|
eqtr4di |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → dom 𝑇 = suc dom 𝑥 ) |
50 |
49
|
reseq2d |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑍 ↾ dom 𝑇 ) = ( 𝑍 ↾ suc dom 𝑥 ) ) |
51 |
41 50
|
breq12d |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ↔ ( 𝑥 ∪ { 〈 dom 𝑥 , 1o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑥 ) ) ) |
52 |
23 51
|
mtbird |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) |
53 |
52
|
exp31 |
⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ) ) |
54 |
21 53
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ) |
55 |
54
|
imp |
⊢ ( ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) |
56 |
|
simprl3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → 𝑍 ∈ No ) |
57 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) → 𝑇 ∈ No ) |
58 |
57
|
3adant3 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) → 𝑇 ∈ No ) |
59 |
58
|
ad2antrl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → 𝑇 ∈ No ) |
60 |
|
nodmon |
⊢ ( 𝑇 ∈ No → dom 𝑇 ∈ On ) |
61 |
59 60
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → dom 𝑇 ∈ On ) |
62 |
|
noreson |
⊢ ( ( 𝑍 ∈ No ∧ dom 𝑇 ∈ On ) → ( 𝑍 ↾ dom 𝑇 ) ∈ No ) |
63 |
56 61 62
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑍 ↾ dom 𝑇 ) ∈ No ) |
64 |
|
nofun |
⊢ ( 𝑇 ∈ No → Fun 𝑇 ) |
65 |
|
funrel |
⊢ ( Fun 𝑇 → Rel 𝑇 ) |
66 |
58 64 65
|
3syl |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) → Rel 𝑇 ) |
67 |
66
|
ad2antrl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → Rel 𝑇 ) |
68 |
|
resdm |
⊢ ( Rel 𝑇 → ( 𝑇 ↾ dom 𝑇 ) = 𝑇 ) |
69 |
67 68
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑇 ↾ dom 𝑇 ) = 𝑇 ) |
70 |
69 59
|
eqeltrd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑇 ↾ dom 𝑇 ) ∈ No ) |
71 |
|
resdmss |
⊢ dom ( 𝑍 ↾ dom 𝑇 ) ⊆ dom 𝑇 |
72 |
71
|
a1i |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → dom ( 𝑍 ↾ dom 𝑇 ) ⊆ dom 𝑇 ) |
73 |
|
resdmss |
⊢ dom ( 𝑇 ↾ dom 𝑇 ) ⊆ dom 𝑇 |
74 |
73
|
a1i |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → dom ( 𝑇 ↾ dom 𝑇 ) ⊆ dom 𝑇 ) |
75 |
1
|
noinfdm |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { 𝑔 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) } ) |
76 |
75
|
abeq2d |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → ( 𝑔 ∈ dom 𝑇 ↔ ∃ 𝑝 ∈ 𝐵 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) |
77 |
76
|
adantr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑔 ∈ dom 𝑇 ↔ ∃ 𝑝 ∈ 𝐵 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) |
78 |
|
simpll |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
79 |
|
simprl1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → 𝐵 ⊆ No ) |
80 |
79
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝐵 ⊆ No ) |
81 |
|
simprl2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → 𝐵 ∈ 𝑉 ) |
82 |
81
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝐵 ∈ 𝑉 ) |
83 |
|
simprl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑝 ∈ 𝐵 ) |
84 |
|
simprrl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑔 ∈ dom 𝑝 ) |
85 |
|
simprrr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) |
86 |
|
breq2 |
⊢ ( 𝑞 = 𝑣 → ( 𝑝 <s 𝑞 ↔ 𝑝 <s 𝑣 ) ) |
87 |
86
|
notbid |
⊢ ( 𝑞 = 𝑣 → ( ¬ 𝑝 <s 𝑞 ↔ ¬ 𝑝 <s 𝑣 ) ) |
88 |
|
reseq1 |
⊢ ( 𝑞 = 𝑣 → ( 𝑞 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) |
89 |
88
|
eqeq2d |
⊢ ( 𝑞 = 𝑣 → ( ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ↔ ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) |
90 |
87 89
|
imbi12d |
⊢ ( 𝑞 = 𝑣 → ( ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ↔ ( ¬ 𝑝 <s 𝑣 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) |
91 |
90
|
cbvralvw |
⊢ ( ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ↔ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑝 <s 𝑣 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) |
92 |
85 91
|
sylib |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑝 <s 𝑣 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) |
93 |
1
|
noinfres |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑝 <s 𝑣 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ) ) → ( 𝑇 ↾ suc 𝑔 ) = ( 𝑝 ↾ suc 𝑔 ) ) |
94 |
78 80 82 83 84 92 93
|
syl123anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( 𝑇 ↾ suc 𝑔 ) = ( 𝑝 ↾ suc 𝑔 ) ) |
95 |
|
breq2 |
⊢ ( 𝑏 = 𝑝 → ( 𝑍 <s 𝑏 ↔ 𝑍 <s 𝑝 ) ) |
96 |
|
simplrr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) |
97 |
95 96 83
|
rspcdva |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑍 <s 𝑝 ) |
98 |
56
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑍 ∈ No ) |
99 |
80 83
|
sseldd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑝 ∈ No ) |
100 |
|
sltso |
⊢ <s Or No |
101 |
|
soasym |
⊢ ( ( <s Or No ∧ ( 𝑍 ∈ No ∧ 𝑝 ∈ No ) ) → ( 𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍 ) ) |
102 |
100 101
|
mpan |
⊢ ( ( 𝑍 ∈ No ∧ 𝑝 ∈ No ) → ( 𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍 ) ) |
103 |
98 99 102
|
syl2anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( 𝑍 <s 𝑝 → ¬ 𝑝 <s 𝑍 ) ) |
104 |
97 103
|
mpd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ 𝑝 <s 𝑍 ) |
105 |
|
nodmon |
⊢ ( 𝑝 ∈ No → dom 𝑝 ∈ On ) |
106 |
99 105
|
syl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → dom 𝑝 ∈ On ) |
107 |
|
onelon |
⊢ ( ( dom 𝑝 ∈ On ∧ 𝑔 ∈ dom 𝑝 ) → 𝑔 ∈ On ) |
108 |
106 84 107
|
syl2anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → 𝑔 ∈ On ) |
109 |
|
sucelon |
⊢ ( 𝑔 ∈ On ↔ suc 𝑔 ∈ On ) |
110 |
108 109
|
sylib |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → suc 𝑔 ∈ On ) |
111 |
|
sltres |
⊢ ( ( 𝑝 ∈ No ∧ 𝑍 ∈ No ∧ suc 𝑔 ∈ On ) → ( ( 𝑝 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) → 𝑝 <s 𝑍 ) ) |
112 |
99 98 110 111
|
syl3anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ( ( 𝑝 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) → 𝑝 <s 𝑍 ) ) |
113 |
104 112
|
mtod |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ( 𝑝 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) |
114 |
94 113
|
eqnbrtrd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ ( 𝑝 ∈ 𝐵 ∧ ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) ) ) → ¬ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) |
115 |
114
|
rexlimdvaa |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( ∃ 𝑝 ∈ 𝐵 ( 𝑔 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑔 ) = ( 𝑞 ↾ suc 𝑔 ) ) ) → ¬ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) ) |
116 |
77 115
|
sylbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑔 ∈ dom 𝑇 → ¬ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) ) |
117 |
116
|
imp |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ¬ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) |
118 |
|
nodmord |
⊢ ( 𝑇 ∈ No → Ord dom 𝑇 ) |
119 |
|
ordsucss |
⊢ ( Ord dom 𝑇 → ( 𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇 ) ) |
120 |
59 118 119
|
3syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( 𝑔 ∈ dom 𝑇 → suc 𝑔 ⊆ dom 𝑇 ) ) |
121 |
120
|
imp |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → suc 𝑔 ⊆ dom 𝑇 ) |
122 |
121
|
resabs1d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) = ( 𝑇 ↾ suc 𝑔 ) ) |
123 |
121
|
resabs1d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) = ( 𝑍 ↾ suc 𝑔 ) ) |
124 |
122 123
|
breq12d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ( ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) <s ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) ↔ ( 𝑇 ↾ suc 𝑔 ) <s ( 𝑍 ↾ suc 𝑔 ) ) ) |
125 |
117 124
|
mtbird |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) ∧ 𝑔 ∈ dom 𝑇 ) → ¬ ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) <s ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) ) |
126 |
125
|
ralrimiva |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ∀ 𝑔 ∈ dom 𝑇 ¬ ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) <s ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) ) |
127 |
|
noresle |
⊢ ( ( ( ( 𝑍 ↾ dom 𝑇 ) ∈ No ∧ ( 𝑇 ↾ dom 𝑇 ) ∈ No ) ∧ ( dom ( 𝑍 ↾ dom 𝑇 ) ⊆ dom 𝑇 ∧ dom ( 𝑇 ↾ dom 𝑇 ) ⊆ dom 𝑇 ∧ ∀ 𝑔 ∈ dom 𝑇 ¬ ( ( 𝑇 ↾ dom 𝑇 ) ↾ suc 𝑔 ) <s ( ( 𝑍 ↾ dom 𝑇 ) ↾ suc 𝑔 ) ) ) → ¬ ( 𝑇 ↾ dom 𝑇 ) <s ( 𝑍 ↾ dom 𝑇 ) ) |
128 |
63 70 72 74 126 127
|
syl23anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ¬ ( 𝑇 ↾ dom 𝑇 ) <s ( 𝑍 ↾ dom 𝑇 ) ) |
129 |
69
|
breq1d |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ( ( 𝑇 ↾ dom 𝑇 ) <s ( 𝑍 ↾ dom 𝑇 ) ↔ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ) |
130 |
128 129
|
mtbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) |
131 |
55 130
|
pm2.61ian |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) |
132 |
|
simplr |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) |
133 |
|
simpll1 |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ⊆ No ) |
134 |
|
simpll2 |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ∈ 𝑉 ) |
135 |
|
simpr |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
136 |
1
|
noinfbnd1 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑏 ∈ 𝐵 ) → 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) ) |
137 |
133 134 135 136
|
syl3anc |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) ) |
138 |
|
simpl3 |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → 𝑍 ∈ No ) |
139 |
|
simpl1 |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → 𝐵 ⊆ No ) |
140 |
|
simpl2 |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → 𝐵 ∈ 𝑉 ) |
141 |
139 140 57
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → 𝑇 ∈ No ) |
142 |
141 60
|
syl |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → dom 𝑇 ∈ On ) |
143 |
138 142 62
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → ( 𝑍 ↾ dom 𝑇 ) ∈ No ) |
144 |
143
|
adantr |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑍 ↾ dom 𝑇 ) ∈ No ) |
145 |
141
|
adantr |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑇 ∈ No ) |
146 |
139
|
sselda |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
147 |
142
|
adantr |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → dom 𝑇 ∈ On ) |
148 |
|
noreson |
⊢ ( ( 𝑏 ∈ No ∧ dom 𝑇 ∈ On ) → ( 𝑏 ↾ dom 𝑇 ) ∈ No ) |
149 |
146 147 148
|
syl2anc |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ↾ dom 𝑇 ) ∈ No ) |
150 |
|
sotr2 |
⊢ ( ( <s Or No ∧ ( ( 𝑍 ↾ dom 𝑇 ) ∈ No ∧ 𝑇 ∈ No ∧ ( 𝑏 ↾ dom 𝑇 ) ∈ No ) ) → ( ( ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ∧ 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) ) → ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) ) ) |
151 |
100 150
|
mpan |
⊢ ( ( ( 𝑍 ↾ dom 𝑇 ) ∈ No ∧ 𝑇 ∈ No ∧ ( 𝑏 ↾ dom 𝑇 ) ∈ No ) → ( ( ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ∧ 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) ) → ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) ) ) |
152 |
144 145 149 151
|
syl3anc |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ( ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ∧ 𝑇 <s ( 𝑏 ↾ dom 𝑇 ) ) → ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) ) ) |
153 |
132 137 152
|
mp2and |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) ) |
154 |
|
simpll3 |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑍 ∈ No ) |
155 |
|
sltres |
⊢ ( ( 𝑍 ∈ No ∧ 𝑏 ∈ No ∧ dom 𝑇 ∈ On ) → ( ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) → 𝑍 <s 𝑏 ) ) |
156 |
154 146 147 155
|
syl3anc |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑍 ↾ dom 𝑇 ) <s ( 𝑏 ↾ dom 𝑇 ) → 𝑍 <s 𝑏 ) ) |
157 |
153 156
|
mpd |
⊢ ( ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑍 <s 𝑏 ) |
158 |
157
|
ralrimiva |
⊢ ( ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) ∧ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) → ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ) |
159 |
131 158
|
impbida |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No ) → ( ∀ 𝑏 ∈ 𝐵 𝑍 <s 𝑏 ↔ ¬ 𝑇 <s ( 𝑍 ↾ dom 𝑇 ) ) ) |