| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pssss | ⊢ ( 𝐵  ⊊  𝐴  →  𝐵  ⊆  𝐴 ) | 
						
							| 2 |  | ssexg | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ∈  ω )  →  𝐵  ∈  V ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐵  ⊊  𝐴  ∧  𝐴  ∈  ω )  →  𝐵  ∈  V ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  𝐵  ∈  V ) | 
						
							| 5 |  | psseq2 | ⊢ ( 𝑧  =  ∅  →  ( 𝑤  ⊊  𝑧  ↔  𝑤  ⊊  ∅ ) ) | 
						
							| 6 |  | rexeq | ⊢ ( 𝑧  =  ∅  →  ( ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥  ↔  ∃ 𝑥  ∈  ∅ 𝑤  ≈  𝑥 ) ) | 
						
							| 7 | 5 6 | imbi12d | ⊢ ( 𝑧  =  ∅  →  ( ( 𝑤  ⊊  𝑧  →  ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥 )  ↔  ( 𝑤  ⊊  ∅  →  ∃ 𝑥  ∈  ∅ 𝑤  ≈  𝑥 ) ) ) | 
						
							| 8 | 7 | albidv | ⊢ ( 𝑧  =  ∅  →  ( ∀ 𝑤 ( 𝑤  ⊊  𝑧  →  ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥 )  ↔  ∀ 𝑤 ( 𝑤  ⊊  ∅  →  ∃ 𝑥  ∈  ∅ 𝑤  ≈  𝑥 ) ) ) | 
						
							| 9 |  | psseq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑤  ⊊  𝑧  ↔  𝑤  ⊊  𝑦 ) ) | 
						
							| 10 |  | rexeq | ⊢ ( 𝑧  =  𝑦  →  ( ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥  ↔  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) ) | 
						
							| 11 | 9 10 | imbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑤  ⊊  𝑧  →  ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥 )  ↔  ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 12 | 11 | albidv | ⊢ ( 𝑧  =  𝑦  →  ( ∀ 𝑤 ( 𝑤  ⊊  𝑧  →  ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥 )  ↔  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 13 |  | psseq2 | ⊢ ( 𝑧  =  suc  𝑦  →  ( 𝑤  ⊊  𝑧  ↔  𝑤  ⊊  suc  𝑦 ) ) | 
						
							| 14 |  | rexeq | ⊢ ( 𝑧  =  suc  𝑦  →  ( ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥  ↔  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) | 
						
							| 15 | 13 14 | imbi12d | ⊢ ( 𝑧  =  suc  𝑦  →  ( ( 𝑤  ⊊  𝑧  →  ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥 )  ↔  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 16 | 15 | albidv | ⊢ ( 𝑧  =  suc  𝑦  →  ( ∀ 𝑤 ( 𝑤  ⊊  𝑧  →  ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥 )  ↔  ∀ 𝑤 ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 17 |  | psseq2 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑤  ⊊  𝑧  ↔  𝑤  ⊊  𝐴 ) ) | 
						
							| 18 |  | rexeq | ⊢ ( 𝑧  =  𝐴  →  ( ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥  ↔  ∃ 𝑥  ∈  𝐴 𝑤  ≈  𝑥 ) ) | 
						
							| 19 | 17 18 | imbi12d | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑤  ⊊  𝑧  →  ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥 )  ↔  ( 𝑤  ⊊  𝐴  →  ∃ 𝑥  ∈  𝐴 𝑤  ≈  𝑥 ) ) ) | 
						
							| 20 | 19 | albidv | ⊢ ( 𝑧  =  𝐴  →  ( ∀ 𝑤 ( 𝑤  ⊊  𝑧  →  ∃ 𝑥  ∈  𝑧 𝑤  ≈  𝑥 )  ↔  ∀ 𝑤 ( 𝑤  ⊊  𝐴  →  ∃ 𝑥  ∈  𝐴 𝑤  ≈  𝑥 ) ) ) | 
						
							| 21 |  | npss0 | ⊢ ¬  𝑤  ⊊  ∅ | 
						
							| 22 | 21 | pm2.21i | ⊢ ( 𝑤  ⊊  ∅  →  ∃ 𝑥  ∈  ∅ 𝑤  ≈  𝑥 ) | 
						
							| 23 | 22 | ax-gen | ⊢ ∀ 𝑤 ( 𝑤  ⊊  ∅  →  ∃ 𝑥  ∈  ∅ 𝑤  ≈  𝑥 ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑤 𝑦  ∈  ω | 
						
							| 25 |  | nfa1 | ⊢ Ⅎ 𝑤 ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) | 
						
							| 26 |  | elequ1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝑤  ↔  𝑦  ∈  𝑤 ) ) | 
						
							| 27 | 26 | biimpcd | ⊢ ( 𝑧  ∈  𝑤  →  ( 𝑧  =  𝑦  →  𝑦  ∈  𝑤 ) ) | 
						
							| 28 | 27 | con3d | ⊢ ( 𝑧  ∈  𝑤  →  ( ¬  𝑦  ∈  𝑤  →  ¬  𝑧  =  𝑦 ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑤  ⊊  suc  𝑦  ∧  𝑧  ∈  𝑤 )  →  ( ¬  𝑦  ∈  𝑤  →  ¬  𝑧  =  𝑦 ) ) | 
						
							| 30 |  | pssss | ⊢ ( 𝑤  ⊊  suc  𝑦  →  𝑤  ⊆  suc  𝑦 ) | 
						
							| 31 | 30 | sseld | ⊢ ( 𝑤  ⊊  suc  𝑦  →  ( 𝑧  ∈  𝑤  →  𝑧  ∈  suc  𝑦 ) ) | 
						
							| 32 |  | elsuci | ⊢ ( 𝑧  ∈  suc  𝑦  →  ( 𝑧  ∈  𝑦  ∨  𝑧  =  𝑦 ) ) | 
						
							| 33 | 32 | ord | ⊢ ( 𝑧  ∈  suc  𝑦  →  ( ¬  𝑧  ∈  𝑦  →  𝑧  =  𝑦 ) ) | 
						
							| 34 | 33 | con1d | ⊢ ( 𝑧  ∈  suc  𝑦  →  ( ¬  𝑧  =  𝑦  →  𝑧  ∈  𝑦 ) ) | 
						
							| 35 | 31 34 | syl6 | ⊢ ( 𝑤  ⊊  suc  𝑦  →  ( 𝑧  ∈  𝑤  →  ( ¬  𝑧  =  𝑦  →  𝑧  ∈  𝑦 ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( 𝑤  ⊊  suc  𝑦  ∧  𝑧  ∈  𝑤 )  →  ( ¬  𝑧  =  𝑦  →  𝑧  ∈  𝑦 ) ) | 
						
							| 37 | 29 36 | syld | ⊢ ( ( 𝑤  ⊊  suc  𝑦  ∧  𝑧  ∈  𝑤 )  →  ( ¬  𝑦  ∈  𝑤  →  𝑧  ∈  𝑦 ) ) | 
						
							| 38 | 37 | impancom | ⊢ ( ( 𝑤  ⊊  suc  𝑦  ∧  ¬  𝑦  ∈  𝑤 )  →  ( 𝑧  ∈  𝑤  →  𝑧  ∈  𝑦 ) ) | 
						
							| 39 | 38 | ssrdv | ⊢ ( ( 𝑤  ⊊  suc  𝑦  ∧  ¬  𝑦  ∈  𝑤 )  →  𝑤  ⊆  𝑦 ) | 
						
							| 40 | 39 | anim1i | ⊢ ( ( ( 𝑤  ⊊  suc  𝑦  ∧  ¬  𝑦  ∈  𝑤 )  ∧  ¬  𝑤  =  𝑦 )  →  ( 𝑤  ⊆  𝑦  ∧  ¬  𝑤  =  𝑦 ) ) | 
						
							| 41 |  | dfpss2 | ⊢ ( 𝑤  ⊊  𝑦  ↔  ( 𝑤  ⊆  𝑦  ∧  ¬  𝑤  =  𝑦 ) ) | 
						
							| 42 | 40 41 | sylibr | ⊢ ( ( ( 𝑤  ⊊  suc  𝑦  ∧  ¬  𝑦  ∈  𝑤 )  ∧  ¬  𝑤  =  𝑦 )  →  𝑤  ⊊  𝑦 ) | 
						
							| 43 |  | elelsuc | ⊢ ( 𝑥  ∈  𝑦  →  𝑥  ∈  suc  𝑦 ) | 
						
							| 44 | 43 | anim1i | ⊢ ( ( 𝑥  ∈  𝑦  ∧  𝑤  ≈  𝑥 )  →  ( 𝑥  ∈  suc  𝑦  ∧  𝑤  ≈  𝑥 ) ) | 
						
							| 45 | 44 | reximi2 | ⊢ ( ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) | 
						
							| 46 | 42 45 | imim12i | ⊢ ( ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 )  →  ( ( ( 𝑤  ⊊  suc  𝑦  ∧  ¬  𝑦  ∈  𝑤 )  ∧  ¬  𝑤  =  𝑦 )  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) | 
						
							| 47 | 46 | exp4c | ⊢ ( ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 )  →  ( 𝑤  ⊊  suc  𝑦  →  ( ¬  𝑦  ∈  𝑤  →  ( ¬  𝑤  =  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) ) | 
						
							| 48 | 47 | sps | ⊢ ( ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 )  →  ( 𝑤  ⊊  suc  𝑦  →  ( ¬  𝑦  ∈  𝑤  →  ( ¬  𝑤  =  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ( ¬  𝑦  ∈  𝑤  →  ( ¬  𝑤  =  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) ) | 
						
							| 50 | 49 | com4t | ⊢ ( ¬  𝑦  ∈  𝑤  →  ( ¬  𝑤  =  𝑦  →  ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) ) | 
						
							| 51 |  | anidm | ⊢ ( ( 𝑤  ⊊  suc  𝑦  ∧  𝑤  ⊊  suc  𝑦 )  ↔  𝑤  ⊊  suc  𝑦 ) | 
						
							| 52 |  | ssdif | ⊢ ( 𝑤  ⊆  suc  𝑦  →  ( 𝑤  ∖  { 𝑦 } )  ⊆  ( suc  𝑦  ∖  { 𝑦 } ) ) | 
						
							| 53 |  | nnord | ⊢ ( 𝑦  ∈  ω  →  Ord  𝑦 ) | 
						
							| 54 |  | orddif | ⊢ ( Ord  𝑦  →  𝑦  =  ( suc  𝑦  ∖  { 𝑦 } ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( 𝑦  ∈  ω  →  𝑦  =  ( suc  𝑦  ∖  { 𝑦 } ) ) | 
						
							| 56 | 55 | sseq2d | ⊢ ( 𝑦  ∈  ω  →  ( ( 𝑤  ∖  { 𝑦 } )  ⊆  𝑦  ↔  ( 𝑤  ∖  { 𝑦 } )  ⊆  ( suc  𝑦  ∖  { 𝑦 } ) ) ) | 
						
							| 57 | 52 56 | imbitrrid | ⊢ ( 𝑦  ∈  ω  →  ( 𝑤  ⊆  suc  𝑦  →  ( 𝑤  ∖  { 𝑦 } )  ⊆  𝑦 ) ) | 
						
							| 58 | 30 57 | syl5 | ⊢ ( 𝑦  ∈  ω  →  ( 𝑤  ⊊  suc  𝑦  →  ( 𝑤  ∖  { 𝑦 } )  ⊆  𝑦 ) ) | 
						
							| 59 |  | pssnel | ⊢ ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑧 ( 𝑧  ∈  suc  𝑦  ∧  ¬  𝑧  ∈  𝑤 ) ) | 
						
							| 60 |  | eleq2 | ⊢ ( ( 𝑤  ∖  { 𝑦 } )  =  𝑦  →  ( 𝑧  ∈  ( 𝑤  ∖  { 𝑦 } )  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 61 |  | eldifi | ⊢ ( 𝑧  ∈  ( 𝑤  ∖  { 𝑦 } )  →  𝑧  ∈  𝑤 ) | 
						
							| 62 | 60 61 | biimtrrdi | ⊢ ( ( 𝑤  ∖  { 𝑦 } )  =  𝑦  →  ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝑤 ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝑦  ∈  𝑤  ∧  𝑧  ∈  suc  𝑦 )  ∧  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 )  →  ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝑤 ) ) | 
						
							| 64 |  | eleq1a | ⊢ ( 𝑦  ∈  𝑤  →  ( 𝑧  =  𝑦  →  𝑧  ∈  𝑤 ) ) | 
						
							| 65 | 33 64 | sylan9r | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑧  ∈  suc  𝑦 )  →  ( ¬  𝑧  ∈  𝑦  →  𝑧  ∈  𝑤 ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝑦  ∈  𝑤  ∧  𝑧  ∈  suc  𝑦 )  ∧  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 )  →  ( ¬  𝑧  ∈  𝑦  →  𝑧  ∈  𝑤 ) ) | 
						
							| 67 | 63 66 | pm2.61d | ⊢ ( ( ( 𝑦  ∈  𝑤  ∧  𝑧  ∈  suc  𝑦 )  ∧  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 )  →  𝑧  ∈  𝑤 ) | 
						
							| 68 | 67 | ex | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑧  ∈  suc  𝑦 )  →  ( ( 𝑤  ∖  { 𝑦 } )  =  𝑦  →  𝑧  ∈  𝑤 ) ) | 
						
							| 69 | 68 | con3d | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑧  ∈  suc  𝑦 )  →  ( ¬  𝑧  ∈  𝑤  →  ¬  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 ) ) | 
						
							| 70 | 69 | expimpd | ⊢ ( 𝑦  ∈  𝑤  →  ( ( 𝑧  ∈  suc  𝑦  ∧  ¬  𝑧  ∈  𝑤 )  →  ¬  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 ) ) | 
						
							| 71 | 70 | exlimdv | ⊢ ( 𝑦  ∈  𝑤  →  ( ∃ 𝑧 ( 𝑧  ∈  suc  𝑦  ∧  ¬  𝑧  ∈  𝑤 )  →  ¬  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 ) ) | 
						
							| 72 | 59 71 | syl5 | ⊢ ( 𝑦  ∈  𝑤  →  ( 𝑤  ⊊  suc  𝑦  →  ¬  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 ) ) | 
						
							| 73 | 58 72 | im2anan9r | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( ( 𝑤  ⊊  suc  𝑦  ∧  𝑤  ⊊  suc  𝑦 )  →  ( ( 𝑤  ∖  { 𝑦 } )  ⊆  𝑦  ∧  ¬  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 ) ) ) | 
						
							| 74 | 51 73 | biimtrrid | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( 𝑤  ⊊  suc  𝑦  →  ( ( 𝑤  ∖  { 𝑦 } )  ⊆  𝑦  ∧  ¬  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 ) ) ) | 
						
							| 75 |  | dfpss2 | ⊢ ( ( 𝑤  ∖  { 𝑦 } )  ⊊  𝑦  ↔  ( ( 𝑤  ∖  { 𝑦 } )  ⊆  𝑦  ∧  ¬  ( 𝑤  ∖  { 𝑦 } )  =  𝑦 ) ) | 
						
							| 76 | 74 75 | imbitrrdi | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( 𝑤  ⊊  suc  𝑦  →  ( 𝑤  ∖  { 𝑦 } )  ⊊  𝑦 ) ) | 
						
							| 77 |  | psseq1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  ⊊  𝑦  ↔  𝑧  ⊊  𝑦 ) ) | 
						
							| 78 |  | breq1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  ≈  𝑥  ↔  𝑧  ≈  𝑥 ) ) | 
						
							| 79 | 78 | rexbidv | ⊢ ( 𝑤  =  𝑧  →  ( ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥  ↔  ∃ 𝑥  ∈  𝑦 𝑧  ≈  𝑥 ) ) | 
						
							| 80 | 77 79 | imbi12d | ⊢ ( 𝑤  =  𝑧  →  ( ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 )  ↔  ( 𝑧  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑧  ≈  𝑥 ) ) ) | 
						
							| 81 | 80 | cbvalvw | ⊢ ( ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 )  ↔  ∀ 𝑧 ( 𝑧  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑧  ≈  𝑥 ) ) | 
						
							| 82 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 83 | 82 | difexi | ⊢ ( 𝑤  ∖  { 𝑦 } )  ∈  V | 
						
							| 84 |  | psseq1 | ⊢ ( 𝑧  =  ( 𝑤  ∖  { 𝑦 } )  →  ( 𝑧  ⊊  𝑦  ↔  ( 𝑤  ∖  { 𝑦 } )  ⊊  𝑦 ) ) | 
						
							| 85 |  | breq1 | ⊢ ( 𝑧  =  ( 𝑤  ∖  { 𝑦 } )  →  ( 𝑧  ≈  𝑥  ↔  ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 ) ) | 
						
							| 86 | 85 | rexbidv | ⊢ ( 𝑧  =  ( 𝑤  ∖  { 𝑦 } )  →  ( ∃ 𝑥  ∈  𝑦 𝑧  ≈  𝑥  ↔  ∃ 𝑥  ∈  𝑦 ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 ) ) | 
						
							| 87 | 84 86 | imbi12d | ⊢ ( 𝑧  =  ( 𝑤  ∖  { 𝑦 } )  →  ( ( 𝑧  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑧  ≈  𝑥 )  ↔  ( ( 𝑤  ∖  { 𝑦 } )  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 ) ) ) | 
						
							| 88 | 83 87 | spcv | ⊢ ( ∀ 𝑧 ( 𝑧  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑧  ≈  𝑥 )  →  ( ( 𝑤  ∖  { 𝑦 } )  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 ) ) | 
						
							| 89 | 81 88 | sylbi | ⊢ ( ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 )  →  ( ( 𝑤  ∖  { 𝑦 } )  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 ) ) | 
						
							| 90 | 76 89 | sylan9 | ⊢ ( ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  𝑦 ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 ) ) | 
						
							| 91 |  | ordsucelsuc | ⊢ ( Ord  𝑦  →  ( 𝑥  ∈  𝑦  ↔  suc  𝑥  ∈  suc  𝑦 ) ) | 
						
							| 92 | 91 | biimpd | ⊢ ( Ord  𝑦  →  ( 𝑥  ∈  𝑦  →  suc  𝑥  ∈  suc  𝑦 ) ) | 
						
							| 93 | 53 92 | syl | ⊢ ( 𝑦  ∈  ω  →  ( 𝑥  ∈  𝑦  →  suc  𝑥  ∈  suc  𝑦 ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( 𝑥  ∈  𝑦  →  suc  𝑥  ∈  suc  𝑦 ) ) | 
						
							| 95 | 94 | adantrd | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( ( 𝑥  ∈  𝑦  ∧  ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 )  →  suc  𝑥  ∈  suc  𝑦 ) ) | 
						
							| 96 |  | elnn | ⊢ ( ( 𝑥  ∈  𝑦  ∧  𝑦  ∈  ω )  →  𝑥  ∈  ω ) | 
						
							| 97 |  | snex | ⊢ { 〈 𝑦 ,  𝑥 〉 }  ∈  V | 
						
							| 98 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 99 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 100 | 98 99 | f1osn | ⊢ { 〈 𝑦 ,  𝑥 〉 } : { 𝑦 } –1-1-onto→ { 𝑥 } | 
						
							| 101 |  | f1oen3g | ⊢ ( ( { 〈 𝑦 ,  𝑥 〉 }  ∈  V  ∧  { 〈 𝑦 ,  𝑥 〉 } : { 𝑦 } –1-1-onto→ { 𝑥 } )  →  { 𝑦 }  ≈  { 𝑥 } ) | 
						
							| 102 | 97 100 101 | mp2an | ⊢ { 𝑦 }  ≈  { 𝑥 } | 
						
							| 103 | 102 | jctr | ⊢ ( ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  →  ( ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  ∧  { 𝑦 }  ≈  { 𝑥 } ) ) | 
						
							| 104 |  | nnord | ⊢ ( 𝑥  ∈  ω  →  Ord  𝑥 ) | 
						
							| 105 |  | orddisj | ⊢ ( Ord  𝑥  →  ( 𝑥  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 106 | 104 105 | syl | ⊢ ( 𝑥  ∈  ω  →  ( 𝑥  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 107 |  | disjdifr | ⊢ ( ( 𝑤  ∖  { 𝑦 } )  ∩  { 𝑦 } )  =  ∅ | 
						
							| 108 | 106 107 | jctil | ⊢ ( 𝑥  ∈  ω  →  ( ( ( 𝑤  ∖  { 𝑦 } )  ∩  { 𝑦 } )  =  ∅  ∧  ( 𝑥  ∩  { 𝑥 } )  =  ∅ ) ) | 
						
							| 109 |  | unen | ⊢ ( ( ( ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  ∧  { 𝑦 }  ≈  { 𝑥 } )  ∧  ( ( ( 𝑤  ∖  { 𝑦 } )  ∩  { 𝑦 } )  =  ∅  ∧  ( 𝑥  ∩  { 𝑥 } )  =  ∅ ) )  →  ( ( 𝑤  ∖  { 𝑦 } )  ∪  { 𝑦 } )  ≈  ( 𝑥  ∪  { 𝑥 } ) ) | 
						
							| 110 | 103 108 109 | syl2an | ⊢ ( ( ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  ∧  𝑥  ∈  ω )  →  ( ( 𝑤  ∖  { 𝑦 } )  ∪  { 𝑦 } )  ≈  ( 𝑥  ∪  { 𝑥 } ) ) | 
						
							| 111 |  | difsnid | ⊢ ( 𝑦  ∈  𝑤  →  ( ( 𝑤  ∖  { 𝑦 } )  ∪  { 𝑦 } )  =  𝑤 ) | 
						
							| 112 | 111 | eqcomd | ⊢ ( 𝑦  ∈  𝑤  →  𝑤  =  ( ( 𝑤  ∖  { 𝑦 } )  ∪  { 𝑦 } ) ) | 
						
							| 113 |  | df-suc | ⊢ suc  𝑥  =  ( 𝑥  ∪  { 𝑥 } ) | 
						
							| 114 | 113 | a1i | ⊢ ( 𝑦  ∈  𝑤  →  suc  𝑥  =  ( 𝑥  ∪  { 𝑥 } ) ) | 
						
							| 115 | 112 114 | breq12d | ⊢ ( 𝑦  ∈  𝑤  →  ( 𝑤  ≈  suc  𝑥  ↔  ( ( 𝑤  ∖  { 𝑦 } )  ∪  { 𝑦 } )  ≈  ( 𝑥  ∪  { 𝑥 } ) ) ) | 
						
							| 116 | 110 115 | imbitrrid | ⊢ ( 𝑦  ∈  𝑤  →  ( ( ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  ∧  𝑥  ∈  ω )  →  𝑤  ≈  suc  𝑥 ) ) | 
						
							| 117 | 96 116 | sylan2i | ⊢ ( 𝑦  ∈  𝑤  →  ( ( ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  ∈  ω ) )  →  𝑤  ≈  suc  𝑥 ) ) | 
						
							| 118 | 117 | exp4d | ⊢ ( 𝑦  ∈  𝑤  →  ( ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  →  ( 𝑥  ∈  𝑦  →  ( 𝑦  ∈  ω  →  𝑤  ≈  suc  𝑥 ) ) ) ) | 
						
							| 119 | 118 | com24 | ⊢ ( 𝑦  ∈  𝑤  →  ( 𝑦  ∈  ω  →  ( 𝑥  ∈  𝑦  →  ( ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  →  𝑤  ≈  suc  𝑥 ) ) ) ) | 
						
							| 120 | 119 | imp4b | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( ( 𝑥  ∈  𝑦  ∧  ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 )  →  𝑤  ≈  suc  𝑥 ) ) | 
						
							| 121 | 95 120 | jcad | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( ( 𝑥  ∈  𝑦  ∧  ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 )  →  ( suc  𝑥  ∈  suc  𝑦  ∧  𝑤  ≈  suc  𝑥 ) ) ) | 
						
							| 122 |  | breq2 | ⊢ ( 𝑧  =  suc  𝑥  →  ( 𝑤  ≈  𝑧  ↔  𝑤  ≈  suc  𝑥 ) ) | 
						
							| 123 | 122 | rspcev | ⊢ ( ( suc  𝑥  ∈  suc  𝑦  ∧  𝑤  ≈  suc  𝑥 )  →  ∃ 𝑧  ∈  suc  𝑦 𝑤  ≈  𝑧 ) | 
						
							| 124 | 121 123 | syl6 | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( ( 𝑥  ∈  𝑦  ∧  ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 )  →  ∃ 𝑧  ∈  suc  𝑦 𝑤  ≈  𝑧 ) ) | 
						
							| 125 | 124 | exlimdv | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 )  →  ∃ 𝑧  ∈  suc  𝑦 𝑤  ≈  𝑧 ) ) | 
						
							| 126 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝑦 ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥 ) ) | 
						
							| 127 |  | breq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑤  ≈  𝑥  ↔  𝑤  ≈  𝑧 ) ) | 
						
							| 128 | 127 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥  ↔  ∃ 𝑧  ∈  suc  𝑦 𝑤  ≈  𝑧 ) | 
						
							| 129 | 125 126 128 | 3imtr4g | ⊢ ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  →  ( ∃ 𝑥  ∈  𝑦 ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( ∃ 𝑥  ∈  𝑦 ( 𝑤  ∖  { 𝑦 } )  ≈  𝑥  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) | 
						
							| 131 | 90 130 | syld | ⊢ ( ( ( 𝑦  ∈  𝑤  ∧  𝑦  ∈  ω )  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) | 
						
							| 132 | 131 | expl | ⊢ ( 𝑦  ∈  𝑤  →  ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 133 |  | eleq1w | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  ω  ↔  𝑦  ∈  ω ) ) | 
						
							| 134 | 133 | pm5.32i | ⊢ ( ( 𝑤  =  𝑦  ∧  𝑤  ∈  ω )  ↔  ( 𝑤  =  𝑦  ∧  𝑦  ∈  ω ) ) | 
						
							| 135 | 82 | eqelsuc | ⊢ ( 𝑤  =  𝑦  →  𝑤  ∈  suc  𝑦 ) | 
						
							| 136 |  | enrefnn | ⊢ ( 𝑤  ∈  ω  →  𝑤  ≈  𝑤 ) | 
						
							| 137 |  | breq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑤  ≈  𝑥  ↔  𝑤  ≈  𝑤 ) ) | 
						
							| 138 | 137 | rspcev | ⊢ ( ( 𝑤  ∈  suc  𝑦  ∧  𝑤  ≈  𝑤 )  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) | 
						
							| 139 | 135 136 138 | syl2an | ⊢ ( ( 𝑤  =  𝑦  ∧  𝑤  ∈  ω )  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) | 
						
							| 140 | 139 | 2a1d | ⊢ ( ( 𝑤  =  𝑦  ∧  𝑤  ∈  ω )  →  ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 141 | 134 140 | sylbir | ⊢ ( ( 𝑤  =  𝑦  ∧  𝑦  ∈  ω )  →  ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 142 | 141 | ex | ⊢ ( 𝑤  =  𝑦  →  ( 𝑦  ∈  ω  →  ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) ) | 
						
							| 143 | 142 | adantrd | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) ) | 
						
							| 144 | 143 | pm2.43d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 145 | 50 132 144 | pm2.61ii | ⊢ ( ( 𝑦  ∈  ω  ∧  ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 ) )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) | 
						
							| 146 | 145 | ex | ⊢ ( 𝑦  ∈  ω  →  ( ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 )  →  ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 147 | 24 25 146 | alrimd | ⊢ ( 𝑦  ∈  ω  →  ( ∀ 𝑤 ( 𝑤  ⊊  𝑦  →  ∃ 𝑥  ∈  𝑦 𝑤  ≈  𝑥 )  →  ∀ 𝑤 ( 𝑤  ⊊  suc  𝑦  →  ∃ 𝑥  ∈  suc  𝑦 𝑤  ≈  𝑥 ) ) ) | 
						
							| 148 | 8 12 16 20 23 147 | finds | ⊢ ( 𝐴  ∈  ω  →  ∀ 𝑤 ( 𝑤  ⊊  𝐴  →  ∃ 𝑥  ∈  𝐴 𝑤  ≈  𝑥 ) ) | 
						
							| 149 |  | psseq1 | ⊢ ( 𝑤  =  𝐵  →  ( 𝑤  ⊊  𝐴  ↔  𝐵  ⊊  𝐴 ) ) | 
						
							| 150 |  | breq1 | ⊢ ( 𝑤  =  𝐵  →  ( 𝑤  ≈  𝑥  ↔  𝐵  ≈  𝑥 ) ) | 
						
							| 151 | 150 | rexbidv | ⊢ ( 𝑤  =  𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝑤  ≈  𝑥  ↔  ∃ 𝑥  ∈  𝐴 𝐵  ≈  𝑥 ) ) | 
						
							| 152 | 149 151 | imbi12d | ⊢ ( 𝑤  =  𝐵  →  ( ( 𝑤  ⊊  𝐴  →  ∃ 𝑥  ∈  𝐴 𝑤  ≈  𝑥 )  ↔  ( 𝐵  ⊊  𝐴  →  ∃ 𝑥  ∈  𝐴 𝐵  ≈  𝑥 ) ) ) | 
						
							| 153 | 152 | spcgv | ⊢ ( 𝐵  ∈  V  →  ( ∀ 𝑤 ( 𝑤  ⊊  𝐴  →  ∃ 𝑥  ∈  𝐴 𝑤  ≈  𝑥 )  →  ( 𝐵  ⊊  𝐴  →  ∃ 𝑥  ∈  𝐴 𝐵  ≈  𝑥 ) ) ) | 
						
							| 154 | 148 153 | syl5 | ⊢ ( 𝐵  ∈  V  →  ( 𝐴  ∈  ω  →  ( 𝐵  ⊊  𝐴  →  ∃ 𝑥  ∈  𝐴 𝐵  ≈  𝑥 ) ) ) | 
						
							| 155 | 154 | com3l | ⊢ ( 𝐴  ∈  ω  →  ( 𝐵  ⊊  𝐴  →  ( 𝐵  ∈  V  →  ∃ 𝑥  ∈  𝐴 𝐵  ≈  𝑥 ) ) ) | 
						
							| 156 | 155 | imp | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  ( 𝐵  ∈  V  →  ∃ 𝑥  ∈  𝐴 𝐵  ≈  𝑥 ) ) | 
						
							| 157 | 4 156 | mpd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  ∃ 𝑥  ∈  𝐴 𝐵  ≈  𝑥 ) |