Step |
Hyp |
Ref |
Expression |
1 |
|
rrnval.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
2 |
|
rrndstprj1.1 |
⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
3 |
|
rrncms.3 |
⊢ 𝐽 = ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) |
4 |
|
rrncms.4 |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
5 |
|
rrncms.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) |
6 |
|
rrncms.6 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
7 |
|
rrncms.7 |
⊢ 𝑃 = ( 𝑚 ∈ 𝐼 ↦ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ) |
8 |
|
lmrel |
⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) |
9 |
|
fvex |
⊢ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ∈ V |
10 |
9 7
|
fnmpti |
⊢ 𝑃 Fn 𝐼 |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝑃 Fn 𝐼 ) |
12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
13 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 1 ∈ ℤ ) |
14 |
|
fveq2 |
⊢ ( 𝑡 = 𝑘 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑘 ) ) |
15 |
14
|
fveq1d |
⊢ ( 𝑡 = 𝑘 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
16 |
|
eqid |
⊢ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) = ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) |
17 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ V |
18 |
15 16 17
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
20 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
21 |
20 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ↑m 𝐼 ) ) |
22 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ↑m 𝐼 ) → ( 𝐹 ‘ 𝑘 ) : 𝐼 ⟶ ℝ ) |
23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) : 𝐼 ⟶ ℝ ) |
24 |
23
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
25 |
24
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
26 |
19 25
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
27 |
26
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
28 |
1
|
rrnmet |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
29 |
4 28
|
syl |
⊢ ( 𝜑 → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
30 |
|
metxmet |
⊢ ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) → ( ℝn ‘ 𝐼 ) ∈ ( ∞Met ‘ 𝑋 ) ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ℝn ‘ 𝐼 ) ∈ ( ∞Met ‘ 𝑋 ) ) |
32 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
33 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
34 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
35 |
12 31 32 33 34 6
|
iscauf |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
36 |
5 35
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
38 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐼 ∈ Fin ) |
39 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝐼 ) |
40 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
41 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
42 |
41
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
43 |
40 42
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
44 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑗 ∈ ℕ ) |
45 |
40 44
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
46 |
1 2
|
rrndstprj1 |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) ) |
47 |
38 39 43 45 46
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) ) |
48 |
29
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
49 |
|
metsym |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
50 |
48 43 45 49
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
51 |
47 50
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
52 |
51
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
53 |
2
|
remet |
⊢ 𝑀 ∈ ( Met ‘ ℝ ) |
54 |
53
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑀 ∈ ( Met ‘ ℝ ) ) |
55 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ) |
56 |
55 42 25
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
57 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
58 |
57 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝐼 ) ) |
59 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝐼 ) → ( 𝐹 ‘ 𝑗 ) : 𝐼 ⟶ ℝ ) |
60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : 𝐼 ⟶ ℝ ) |
61 |
60
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
62 |
61
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
63 |
62
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
64 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ ℝ ) ∧ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) |
65 |
54 56 63 64
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) |
66 |
65
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) |
67 |
|
metcl |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
68 |
48 45 43 67
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
69 |
68
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
70 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
71 |
70
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
73 |
|
lelttr |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
74 |
66 69 72 73
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
75 |
52 74
|
mpand |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
76 |
75
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
77 |
76
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
78 |
77
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
79 |
2
|
remetdval |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
80 |
56 63 79
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
81 |
42 18
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
82 |
|
fveq2 |
⊢ ( 𝑡 = 𝑗 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑗 ) ) |
83 |
82
|
fveq1d |
⊢ ( 𝑡 = 𝑗 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
84 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ V |
85 |
83 16 84
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
86 |
85
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
87 |
81 86
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) |
88 |
87
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
89 |
80 88
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) ) |
90 |
89
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
91 |
90
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
92 |
91
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
93 |
92
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
94 |
78 93
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
95 |
37 94
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
96 |
|
nnex |
⊢ ℕ ∈ V |
97 |
96
|
mptex |
⊢ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ V |
98 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ V ) |
99 |
12 27 95 98
|
caucvg |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ dom ⇝ ) |
100 |
|
climdm |
⊢ ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ dom ⇝ ↔ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
101 |
99 100
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
102 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) |
103 |
102
|
mpteq2dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) = ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) |
104 |
103
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
105 |
|
fvex |
⊢ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ∈ V |
106 |
104 7 105
|
fvmpt |
⊢ ( 𝑛 ∈ 𝐼 → ( 𝑃 ‘ 𝑛 ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
108 |
101 107
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( 𝑃 ‘ 𝑛 ) ) |
109 |
12 13 108 26
|
climrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
110 |
109
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐼 ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
111 |
|
ffnfv |
⊢ ( 𝑃 : 𝐼 ⟶ ℝ ↔ ( 𝑃 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) ) |
112 |
11 110 111
|
sylanbrc |
⊢ ( 𝜑 → 𝑃 : 𝐼 ⟶ ℝ ) |
113 |
|
reex |
⊢ ℝ ∈ V |
114 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝐼 ∈ Fin ) → ( 𝑃 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑃 : 𝐼 ⟶ ℝ ) ) |
115 |
113 4 114
|
sylancr |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑃 : 𝐼 ⟶ ℝ ) ) |
116 |
112 115
|
mpbird |
⊢ ( 𝜑 → 𝑃 ∈ ( ℝ ↑m 𝐼 ) ) |
117 |
116 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
118 |
|
1nn |
⊢ 1 ∈ ℕ |
119 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ Fin ) |
120 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
121 |
117
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ 𝑋 ) |
122 |
1
|
rrnmval |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) ) |
123 |
119 120 121 122
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) ) |
124 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 = ∅ ) |
125 |
124
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = Σ 𝑦 ∈ ∅ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) |
126 |
|
sum0 |
⊢ Σ 𝑦 ∈ ∅ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = 0 |
127 |
125 126
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = 0 ) |
128 |
127
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) = ( √ ‘ 0 ) ) |
129 |
123 128
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ 0 ) ) |
130 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
131 |
129 130
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = 0 ) |
132 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ+ ) |
133 |
132
|
rpgt0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝑥 ) |
134 |
131 133
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
135 |
134
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) → ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
136 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 1 ) ) |
137 |
136 12
|
eqtr4di |
⊢ ( 𝑗 = 1 → ( ℤ≥ ‘ 𝑗 ) = ℕ ) |
138 |
137
|
raleqdv |
⊢ ( 𝑗 = 1 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
139 |
138
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
140 |
118 135 139
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
141 |
140
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐼 = ∅ → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
142 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → 1 ∈ ℤ ) |
143 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝑥 ∈ ℝ+ ) |
144 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ≠ ∅ ) |
145 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ∈ Fin ) |
146 |
|
hashnncl |
⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
147 |
145 146
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
148 |
144 147
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
149 |
148
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
150 |
149
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
151 |
143 150
|
rpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
152 |
151
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
153 |
18
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
154 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( 𝑃 ‘ 𝑛 ) ) |
155 |
12 142 152 153 154
|
climi2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
156 |
|
1z |
⊢ 1 ∈ ℤ |
157 |
12
|
rexuz3 |
⊢ ( 1 ∈ ℤ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
158 |
156 157
|
ax-mp |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
159 |
25
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
160 |
109
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
161 |
160
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
162 |
2
|
remetdval |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) ) |
163 |
159 161 162
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) ) |
164 |
163
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
165 |
41 164
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
166 |
165
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
167 |
166
|
ralbidva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
168 |
167
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
169 |
158 168
|
bitr3id |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
170 |
155 169
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
171 |
170
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
172 |
12
|
rexuz3 |
⊢ ( 1 ∈ ℤ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
173 |
156 172
|
ax-mp |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
174 |
|
rexfiuz |
⊢ ( 𝐼 ∈ Fin → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
175 |
145 174
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
176 |
173 175
|
syl5bb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
177 |
171 176
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
178 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ Fin ) |
179 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ≠ ∅ ) |
180 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) |
181 |
178 179 180
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
182 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
183 |
182
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
184 |
117
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ 𝑋 ) |
185 |
151
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
186 |
1 2
|
rrndstprj2 |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
187 |
186
|
expr |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
188 |
181 183 184 185 187
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
189 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ+ ) |
190 |
189
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℂ ) |
191 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
192 |
191
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
193 |
191
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
194 |
190 192 193
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = 𝑥 ) |
195 |
194
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
196 |
188 195
|
sylibd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
197 |
41 196
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
198 |
197
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
199 |
198
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
200 |
199
|
reximdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
201 |
177 200
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
202 |
201
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐼 ≠ ∅ → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
203 |
141 202
|
pm2.61dne |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
204 |
203
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
205 |
3 31 12 32 33 6
|
lmmbrf |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) ) |
206 |
117 204 205
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
207 |
|
releldm |
⊢ ( ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
208 |
8 206 207
|
sylancr |
⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |