| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrnval.1 |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
| 2 |
|
rrndstprj1.1 |
⊢ 𝑀 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 3 |
|
rrncms.3 |
⊢ 𝐽 = ( MetOpen ‘ ( ℝn ‘ 𝐼 ) ) |
| 4 |
|
rrncms.4 |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 5 |
|
rrncms.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ) |
| 6 |
|
rrncms.6 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
| 7 |
|
rrncms.7 |
⊢ 𝑃 = ( 𝑚 ∈ 𝐼 ↦ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ) |
| 8 |
|
lmrel |
⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) |
| 9 |
|
fvex |
⊢ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) ∈ V |
| 10 |
9 7
|
fnmpti |
⊢ 𝑃 Fn 𝐼 |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 𝑃 Fn 𝐼 ) |
| 12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 13 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 1 ∈ ℤ ) |
| 14 |
|
fveq2 |
⊢ ( 𝑡 = 𝑘 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝑡 = 𝑘 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 16 |
|
eqid |
⊢ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) = ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) |
| 17 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ V |
| 18 |
15 16 17
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 20 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 21 |
20 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ↑m 𝐼 ) ) |
| 22 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℝ ↑m 𝐼 ) → ( 𝐹 ‘ 𝑘 ) : 𝐼 ⟶ ℝ ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) : 𝐼 ⟶ ℝ ) |
| 24 |
23
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
| 25 |
24
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
| 26 |
19 25
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 27 |
26
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 28 |
1
|
rrnmet |
⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 29 |
4 28
|
syl |
⊢ ( 𝜑 → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 30 |
|
metxmet |
⊢ ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) → ( ℝn ‘ 𝐼 ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ℝn ‘ 𝐼 ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 32 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 33 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 34 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 35 |
12 31 32 33 34 6
|
iscauf |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ ( ℝn ‘ 𝐼 ) ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 36 |
5 35
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
| 38 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐼 ∈ Fin ) |
| 39 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝐼 ) |
| 40 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 41 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 42 |
41
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 43 |
40 42
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 44 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑗 ∈ ℕ ) |
| 45 |
40 44
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
| 46 |
1 2
|
rrndstprj1 |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 47 |
38 39 43 45 46
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 48 |
29
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 49 |
|
metsym |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 50 |
48 43 45 49
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 51 |
47 50
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 52 |
51
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 |
2
|
remet |
⊢ 𝑀 ∈ ( Met ‘ ℝ ) |
| 54 |
53
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑀 ∈ ( Met ‘ ℝ ) ) |
| 55 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ) |
| 56 |
55 42 25
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
| 57 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
| 58 |
57 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝐼 ) ) |
| 59 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℝ ↑m 𝐼 ) → ( 𝐹 ‘ 𝑗 ) : 𝐼 ⟶ ℝ ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : 𝐼 ⟶ ℝ ) |
| 61 |
60
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
| 62 |
61
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
| 63 |
62
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) |
| 64 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ ℝ ) ∧ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 65 |
54 56 63 64
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 66 |
65
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 67 |
|
metcl |
⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 68 |
48 45 43 67
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 69 |
68
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 70 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 71 |
70
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 72 |
71
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
| 73 |
|
lelttr |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 74 |
66 69 72 73
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 75 |
52 74
|
mpand |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 76 |
75
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 77 |
76
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 78 |
77
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ) ) |
| 79 |
2
|
remetdval |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
| 80 |
56 63 79
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
| 81 |
42 18
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 82 |
|
fveq2 |
⊢ ( 𝑡 = 𝑗 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 83 |
82
|
fveq1d |
⊢ ( 𝑡 = 𝑗 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
| 84 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ∈ V |
| 85 |
83 16 84
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
| 86 |
85
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) |
| 87 |
81 86
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) |
| 88 |
87
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) ) ) |
| 89 |
80 88
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) ) |
| 90 |
89
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 91 |
90
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 92 |
91
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 93 |
92
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑛 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 94 |
78 93
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑗 ) ( ℝn ‘ 𝐼 ) ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 95 |
37 94
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) − ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
| 96 |
|
nnex |
⊢ ℕ ∈ V |
| 97 |
96
|
mptex |
⊢ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ V |
| 98 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ V ) |
| 99 |
12 27 95 98
|
caucvg |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ dom ⇝ ) |
| 100 |
|
climdm |
⊢ ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ∈ dom ⇝ ↔ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 101 |
99 100
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 102 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) |
| 103 |
102
|
mpteq2dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) = ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) |
| 104 |
103
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑚 ) ) ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 105 |
|
fvex |
⊢ ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ∈ V |
| 106 |
104 7 105
|
fvmpt |
⊢ ( 𝑛 ∈ 𝐼 → ( 𝑃 ‘ 𝑛 ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) = ( ⇝ ‘ ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ) ) |
| 108 |
101 107
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( 𝑃 ‘ 𝑛 ) ) |
| 109 |
12 13 108 26
|
climrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
| 110 |
109
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐼 ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
| 111 |
|
ffnfv |
⊢ ( 𝑃 : 𝐼 ⟶ ℝ ↔ ( 𝑃 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) ) |
| 112 |
11 110 111
|
sylanbrc |
⊢ ( 𝜑 → 𝑃 : 𝐼 ⟶ ℝ ) |
| 113 |
|
reex |
⊢ ℝ ∈ V |
| 114 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝐼 ∈ Fin ) → ( 𝑃 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑃 : 𝐼 ⟶ ℝ ) ) |
| 115 |
113 4 114
|
sylancr |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑃 : 𝐼 ⟶ ℝ ) ) |
| 116 |
112 115
|
mpbird |
⊢ ( 𝜑 → 𝑃 ∈ ( ℝ ↑m 𝐼 ) ) |
| 117 |
116 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 118 |
|
1nn |
⊢ 1 ∈ ℕ |
| 119 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ Fin ) |
| 120 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 121 |
117
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ 𝑋 ) |
| 122 |
1
|
rrnmval |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) ) |
| 123 |
119 120 121 122
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) ) |
| 124 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 = ∅ ) |
| 125 |
124
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = Σ 𝑦 ∈ ∅ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) |
| 126 |
|
sum0 |
⊢ Σ 𝑦 ∈ ∅ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = 0 |
| 127 |
125 126
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) = 0 ) |
| 128 |
127
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ Σ 𝑦 ∈ 𝐼 ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( 𝑃 ‘ 𝑦 ) ) ↑ 2 ) ) = ( √ ‘ 0 ) ) |
| 129 |
123 128
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = ( √ ‘ 0 ) ) |
| 130 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
| 131 |
129 130
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) = 0 ) |
| 132 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ+ ) |
| 133 |
132
|
rpgt0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝑥 ) |
| 134 |
131 133
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 135 |
134
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) → ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 136 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 1 ) ) |
| 137 |
136 12
|
eqtr4di |
⊢ ( 𝑗 = 1 → ( ℤ≥ ‘ 𝑗 ) = ℕ ) |
| 138 |
137
|
raleqdv |
⊢ ( 𝑗 = 1 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 139 |
138
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 140 |
118 135 139
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 = ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 141 |
140
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐼 = ∅ → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 142 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → 1 ∈ ℤ ) |
| 143 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝑥 ∈ ℝ+ ) |
| 144 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ≠ ∅ ) |
| 145 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ∈ Fin ) |
| 146 |
|
hashnncl |
⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 147 |
145 146
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 148 |
144 147
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
| 149 |
148
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
| 150 |
149
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 151 |
143 150
|
rpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 152 |
151
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 153 |
18
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ) |
| 154 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑡 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑛 ) ) ⇝ ( 𝑃 ‘ 𝑛 ) ) |
| 155 |
12 142 152 153 154
|
climi2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 156 |
|
1z |
⊢ 1 ∈ ℤ |
| 157 |
12
|
rexuz3 |
⊢ ( 1 ∈ ℤ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 158 |
156 157
|
ax-mp |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 159 |
25
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ) |
| 160 |
109
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
| 161 |
160
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) |
| 162 |
2
|
remetdval |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) ∈ ℝ ∧ ( 𝑃 ‘ 𝑛 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) ) |
| 163 |
159 161 162
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) ) |
| 164 |
163
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 165 |
41 164
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 166 |
165
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 167 |
166
|
ralbidva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 168 |
167
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 169 |
158 168
|
bitr3id |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) − ( 𝑃 ‘ 𝑛 ) ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 170 |
155 169
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 171 |
170
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 172 |
12
|
rexuz3 |
⊢ ( 1 ∈ ℤ → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 173 |
156 172
|
ax-mp |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 174 |
|
rexfiuz |
⊢ ( 𝐼 ∈ Fin → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 175 |
145 174
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 176 |
173 175
|
bitrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ∀ 𝑛 ∈ 𝐼 ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 177 |
171 176
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 178 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ Fin ) |
| 179 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ≠ ∅ ) |
| 180 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) |
| 181 |
178 179 180
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
| 182 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 183 |
182
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 184 |
117
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ 𝑋 ) |
| 185 |
151
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 186 |
1 2
|
rrndstprj2 |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 187 |
186
|
expr |
⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 188 |
181 183 184 185 187
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 189 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℝ+ ) |
| 190 |
189
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ℂ ) |
| 191 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 192 |
191
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
| 193 |
191
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
| 194 |
190 192 193
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = 𝑥 ) |
| 195 |
194
|
breq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < ( ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 196 |
188 195
|
sylibd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 197 |
41 196
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 198 |
197
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 199 |
198
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 200 |
199
|
reximdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑛 ) 𝑀 ( 𝑃 ‘ 𝑛 ) ) < ( 𝑥 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 201 |
177 200
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 202 |
201
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐼 ≠ ∅ → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) |
| 203 |
141 202
|
pm2.61dne |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 204 |
203
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) |
| 205 |
3 31 12 32 33 6
|
lmmbrf |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ( ℝn ‘ 𝐼 ) 𝑃 ) < 𝑥 ) ) ) |
| 206 |
117 204 205
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 207 |
|
releldm |
⊢ ( ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 208 |
8 206 207
|
sylancr |
⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |