Step |
Hyp |
Ref |
Expression |
1 |
|
symgtrf.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
2 |
|
symgtrf.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
3 |
|
symgtrf.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
|
symggen.k |
⊢ 𝐾 = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) |
5 |
|
elex |
⊢ ( 𝐷 ∈ 𝑉 → 𝐷 ∈ V ) |
6 |
2
|
symggrp |
⊢ ( 𝐷 ∈ V → 𝐺 ∈ Grp ) |
7 |
6
|
grpmndd |
⊢ ( 𝐷 ∈ V → 𝐺 ∈ Mnd ) |
8 |
3
|
submacs |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
9 |
|
acsmre |
⊢ ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
10 |
7 8 9
|
3syl |
⊢ ( 𝐷 ∈ V → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
11 |
5 10
|
syl |
⊢ ( 𝐷 ∈ 𝑉 → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
12 |
1 2 3
|
symgtrf |
⊢ 𝑇 ⊆ 𝐵 |
13 |
12
|
a1i |
⊢ ( 𝐷 ∈ 𝑉 → 𝑇 ⊆ 𝐵 ) |
14 |
|
2onn |
⊢ 2o ∈ ω |
15 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
16 |
14 15
|
ax-mp |
⊢ 2o ∈ Fin |
17 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
18 |
17 1
|
pmtrfb |
⊢ ( 𝑥 ∈ 𝑇 ↔ ( 𝐷 ∈ V ∧ 𝑥 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝑥 ∖ I ) ≈ 2o ) ) |
19 |
18
|
simp3bi |
⊢ ( 𝑥 ∈ 𝑇 → dom ( 𝑥 ∖ I ) ≈ 2o ) |
20 |
|
enfi |
⊢ ( dom ( 𝑥 ∖ I ) ≈ 2o → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) |
21 |
19 20
|
syl |
⊢ ( 𝑥 ∈ 𝑇 → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇 ) → ( dom ( 𝑥 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) |
23 |
16 22
|
mpbiri |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇 ) → dom ( 𝑥 ∖ I ) ∈ Fin ) |
24 |
13 23
|
ssrabdv |
⊢ ( 𝐷 ∈ 𝑉 → 𝑇 ⊆ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
25 |
2 3
|
symgfisg |
⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
|
subgsubm |
⊢ ( { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) ) |
27 |
25 26
|
syl |
⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) ) |
28 |
4
|
mrcsscl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇 ⊆ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∧ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐾 ‘ 𝑇 ) ⊆ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
29 |
11 24 27 28
|
syl3anc |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝐾 ‘ 𝑇 ) ⊆ { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |
30 |
|
vex |
⊢ 𝑥 ∈ V |
31 |
30
|
a1i |
⊢ ( dom ( 𝑥 ∖ I ) ∈ Fin → 𝑥 ∈ V ) |
32 |
|
finnum |
⊢ ( dom ( 𝑥 ∖ I ) ∈ Fin → dom ( 𝑥 ∖ I ) ∈ dom card ) |
33 |
|
domfi |
⊢ ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ) → dom ( 𝑦 ∖ I ) ∈ Fin ) |
34 |
2 3
|
symgbasf1o |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
35 |
34
|
adantl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
36 |
|
f1ofn |
⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → 𝑦 Fn 𝐷 ) |
37 |
|
fnnfpeq0 |
⊢ ( 𝑦 Fn 𝐷 → ( dom ( 𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷 ) ) ) |
38 |
35 36 37
|
3syl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( dom ( 𝑦 ∖ I ) = ∅ ↔ 𝑦 = ( I ↾ 𝐷 ) ) ) |
39 |
2 3
|
elbasfv |
⊢ ( 𝑦 ∈ 𝐵 → 𝐷 ∈ V ) |
40 |
39
|
adantl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ V ) |
41 |
2
|
symgid |
⊢ ( 𝐷 ∈ V → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
42 |
40 41
|
syl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
43 |
40 10
|
syl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
44 |
4
|
mrccl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
45 |
43 12 44
|
sylancl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
46 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
47 |
46
|
subm0cl |
⊢ ( ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
48 |
45 47
|
syl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
49 |
42 48
|
eqeltrd |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( I ↾ 𝐷 ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
50 |
|
eleq1a |
⊢ ( ( I ↾ 𝐷 ) ∈ ( 𝐾 ‘ 𝑇 ) → ( 𝑦 = ( I ↾ 𝐷 ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
51 |
49 50
|
syl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 = ( I ↾ 𝐷 ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
52 |
38 51
|
sylbid |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → ( dom ( 𝑦 ∖ I ) = ∅ → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
53 |
52
|
adantr |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( dom ( 𝑦 ∖ I ) = ∅ → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
54 |
|
n0 |
⊢ ( dom ( 𝑦 ∖ I ) ≠ ∅ ↔ ∃ 𝑢 𝑢 ∈ dom ( 𝑦 ∖ I ) ) |
55 |
40
|
adantr |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝐷 ∈ V ) |
56 |
|
simpr |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢 ∈ dom ( 𝑦 ∖ I ) ) |
57 |
|
f1omvdmvd |
⊢ ( ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ∈ ( dom ( 𝑦 ∖ I ) ∖ { 𝑢 } ) ) |
58 |
35 57
|
sylan |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ∈ ( dom ( 𝑦 ∖ I ) ∖ { 𝑢 } ) ) |
59 |
58
|
eldifad |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ∈ dom ( 𝑦 ∖ I ) ) |
60 |
56 59
|
prssd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ⊆ dom ( 𝑦 ∖ I ) ) |
61 |
|
difss |
⊢ ( 𝑦 ∖ I ) ⊆ 𝑦 |
62 |
|
dmss |
⊢ ( ( 𝑦 ∖ I ) ⊆ 𝑦 → dom ( 𝑦 ∖ I ) ⊆ dom 𝑦 ) |
63 |
61 62
|
ax-mp |
⊢ dom ( 𝑦 ∖ I ) ⊆ dom 𝑦 |
64 |
|
f1odm |
⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → dom 𝑦 = 𝐷 ) |
65 |
35 64
|
syl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → dom 𝑦 = 𝐷 ) |
66 |
63 65
|
sseqtrid |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → dom ( 𝑦 ∖ I ) ⊆ 𝐷 ) |
67 |
66
|
adantr |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ⊆ 𝐷 ) |
68 |
60 67
|
sstrd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ⊆ 𝐷 ) |
69 |
|
vex |
⊢ 𝑢 ∈ V |
70 |
|
fvex |
⊢ ( 𝑦 ‘ 𝑢 ) ∈ V |
71 |
35
|
adantr |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 : 𝐷 –1-1-onto→ 𝐷 ) |
72 |
71 36
|
syl |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 Fn 𝐷 ) |
73 |
66
|
sselda |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢 ∈ 𝐷 ) |
74 |
|
fnelnfp |
⊢ ( ( 𝑦 Fn 𝐷 ∧ 𝑢 ∈ 𝐷 ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) ↔ ( 𝑦 ‘ 𝑢 ) ≠ 𝑢 ) ) |
75 |
72 73 74
|
syl2anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) ↔ ( 𝑦 ‘ 𝑢 ) ≠ 𝑢 ) ) |
76 |
56 75
|
mpbid |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ≠ 𝑢 ) |
77 |
76
|
necomd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑢 ≠ ( 𝑦 ‘ 𝑢 ) ) |
78 |
|
pr2nelem |
⊢ ( ( 𝑢 ∈ V ∧ ( 𝑦 ‘ 𝑢 ) ∈ V ∧ 𝑢 ≠ ( 𝑦 ‘ 𝑢 ) ) → { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ≈ 2o ) |
79 |
69 70 77 78
|
mp3an12i |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ≈ 2o ) |
80 |
17 1
|
pmtrrn |
⊢ ( ( 𝐷 ∈ V ∧ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ⊆ 𝐷 ∧ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝑇 ) |
81 |
55 68 79 80
|
syl3anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝑇 ) |
82 |
12 81
|
sselid |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝐵 ) |
83 |
|
simplr |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 ∈ 𝐵 ) |
84 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
85 |
2 3 84
|
symgov |
⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) |
86 |
82 83 85
|
syl2anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) |
87 |
86
|
oveq2d |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) ) |
88 |
40 6
|
syl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
89 |
88
|
adantr |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝐺 ∈ Grp ) |
90 |
3 84
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
91 |
89 82 83 90
|
syl3anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
92 |
86 91
|
eqeltrrd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 ) |
93 |
2 3 84
|
symgov |
⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝐵 ∧ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) ) |
94 |
82 92 93
|
syl2anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) ) |
95 |
|
coass |
⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) ∘ 𝑦 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) |
96 |
17 1
|
pmtrfinv |
⊢ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ 𝑇 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) = ( I ↾ 𝐷 ) ) |
97 |
81 96
|
syl |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) = ( I ↾ 𝐷 ) ) |
98 |
97
|
coeq1d |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) ∘ 𝑦 ) = ( ( I ↾ 𝐷 ) ∘ 𝑦 ) ) |
99 |
|
f1of |
⊢ ( 𝑦 : 𝐷 –1-1-onto→ 𝐷 → 𝑦 : 𝐷 ⟶ 𝐷 ) |
100 |
|
fcoi2 |
⊢ ( 𝑦 : 𝐷 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ 𝑦 ) = 𝑦 ) |
101 |
71 99 100
|
3syl |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( I ↾ 𝐷 ) ∘ 𝑦 ) = 𝑦 ) |
102 |
98 101
|
eqtrd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ) ∘ 𝑦 ) = 𝑦 ) |
103 |
95 102
|
eqtr3id |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ) = 𝑦 ) |
104 |
87 94 103
|
3eqtrd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) = 𝑦 ) |
105 |
104
|
adantlr |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) = 𝑦 ) |
106 |
45
|
ad2antrr |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
107 |
4
|
mrcssid |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ 𝑇 ⊆ 𝐵 ) → 𝑇 ⊆ ( 𝐾 ‘ 𝑇 ) ) |
108 |
43 12 107
|
sylancl |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) → 𝑇 ⊆ ( 𝐾 ‘ 𝑇 ) ) |
109 |
108
|
adantr |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑇 ⊆ ( 𝐾 ‘ 𝑇 ) ) |
110 |
109 81
|
sseldd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
111 |
110
|
adantlr |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
112 |
86
|
difeq1d |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) = ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) |
113 |
112
|
dmeqd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) = dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) |
114 |
|
simpll |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ∈ Fin ) |
115 |
|
mvdco |
⊢ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊆ ( dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) ∪ dom ( 𝑦 ∖ I ) ) |
116 |
17
|
pmtrmvd |
⊢ ( ( 𝐷 ∈ V ∧ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ⊆ 𝐷 ∧ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ≈ 2o ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) = { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) |
117 |
55 68 79 116
|
syl3anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) = { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) |
118 |
117 60
|
eqsstrd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) ⊆ dom ( 𝑦 ∖ I ) ) |
119 |
|
ssidd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( 𝑦 ∖ I ) ⊆ dom ( 𝑦 ∖ I ) ) |
120 |
118 119
|
unssd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( dom ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∖ I ) ∪ dom ( 𝑦 ∖ I ) ) ⊆ dom ( 𝑦 ∖ I ) ) |
121 |
115 120
|
sstrid |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊆ dom ( 𝑦 ∖ I ) ) |
122 |
|
fvco2 |
⊢ ( ( 𝑦 Fn 𝐷 ∧ 𝑢 ∈ 𝐷 ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ‘ ( 𝑦 ‘ 𝑢 ) ) ) |
123 |
72 73 122
|
syl2anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ‘ ( 𝑦 ‘ 𝑢 ) ) ) |
124 |
|
prcom |
⊢ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } = { ( 𝑦 ‘ 𝑢 ) , 𝑢 } |
125 |
124
|
fveq2i |
⊢ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦 ‘ 𝑢 ) , 𝑢 } ) |
126 |
125
|
fveq1i |
⊢ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ‘ ( 𝑦 ‘ 𝑢 ) ) = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦 ‘ 𝑢 ) , 𝑢 } ) ‘ ( 𝑦 ‘ 𝑢 ) ) |
127 |
67 59
|
sseldd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( 𝑦 ‘ 𝑢 ) ∈ 𝐷 ) |
128 |
17
|
pmtrprfv |
⊢ ( ( 𝐷 ∈ V ∧ ( ( 𝑦 ‘ 𝑢 ) ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ∧ ( 𝑦 ‘ 𝑢 ) ≠ 𝑢 ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦 ‘ 𝑢 ) , 𝑢 } ) ‘ ( 𝑦 ‘ 𝑢 ) ) = 𝑢 ) |
129 |
55 127 73 76 128
|
syl13anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑦 ‘ 𝑢 ) , 𝑢 } ) ‘ ( 𝑦 ‘ 𝑢 ) ) = 𝑢 ) |
130 |
126 129
|
syl5eq |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ‘ ( 𝑦 ‘ 𝑢 ) ) = 𝑢 ) |
131 |
123 130
|
eqtrd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 ) |
132 |
2 3
|
symgbasf1o |
⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) : 𝐷 –1-1-onto→ 𝐷 ) |
133 |
|
f1ofn |
⊢ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) : 𝐷 –1-1-onto→ 𝐷 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 ) |
134 |
92 132 133
|
3syl |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 ) |
135 |
|
fnelnfp |
⊢ ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 ∧ 𝑢 ∈ 𝐷 ) → ( 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ↔ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) ≠ 𝑢 ) ) |
136 |
135
|
necon2bbid |
⊢ ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) Fn 𝐷 ∧ 𝑢 ∈ 𝐷 ) → ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 ↔ ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) ) |
137 |
134 73 136
|
syl2anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ‘ 𝑢 ) = 𝑢 ↔ ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) ) |
138 |
131 137
|
mpbid |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ¬ 𝑢 ∈ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ) |
139 |
121 56 138
|
ssnelpssd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊊ dom ( 𝑦 ∖ I ) ) |
140 |
|
php3 |
⊢ ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ⊊ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) |
141 |
114 139 140
|
syl2anc |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∘ 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) |
142 |
113 141
|
eqbrtrd |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) |
143 |
142
|
adantlr |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) |
144 |
91
|
adantlr |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
145 |
|
ovex |
⊢ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ V |
146 |
|
difeq1 |
⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑧 ∖ I ) = ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ) |
147 |
146
|
dmeqd |
⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → dom ( 𝑧 ∖ I ) = dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ) |
148 |
147
|
breq1d |
⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) ↔ dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) ) ) |
149 |
|
eleq1 |
⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑧 ∈ 𝐵 ↔ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) ) |
150 |
|
eleq1 |
⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ↔ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
151 |
149 150
|
imbi12d |
⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ↔ ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
152 |
148 151
|
imbi12d |
⊢ ( 𝑧 = ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) → ( ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ↔ ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ) |
153 |
145 152
|
spcv |
⊢ ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) → ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
154 |
153
|
ad2antlr |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( dom ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
155 |
143 144 154
|
mp2d |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
156 |
84
|
submcl |
⊢ ( ( ( 𝐾 ‘ 𝑇 ) ∈ ( SubMnd ‘ 𝐺 ) ∧ ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ∈ ( 𝐾 ‘ 𝑇 ) ∧ ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝐾 ‘ 𝑇 ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
157 |
106 111 155 156
|
syl3anc |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) ( ( ( pmTrsp ‘ 𝐷 ) ‘ { 𝑢 , ( 𝑦 ‘ 𝑢 ) } ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐾 ‘ 𝑇 ) ) |
158 |
105 157
|
eqeltrrd |
⊢ ( ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) ∧ 𝑢 ∈ dom ( 𝑦 ∖ I ) ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) |
159 |
158
|
ex |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( 𝑢 ∈ dom ( 𝑦 ∖ I ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
160 |
159
|
exlimdv |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( ∃ 𝑢 𝑢 ∈ dom ( 𝑦 ∖ I ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
161 |
54 160
|
syl5bi |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( dom ( 𝑦 ∖ I ) ≠ ∅ → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
162 |
53 161
|
pm2.61dne |
⊢ ( ( ( dom ( 𝑦 ∖ I ) ∈ Fin ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) |
163 |
162
|
exp31 |
⊢ ( dom ( 𝑦 ∖ I ) ∈ Fin → ( 𝑦 ∈ 𝐵 → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
164 |
163
|
com23 |
⊢ ( dom ( 𝑦 ∖ I ) ∈ Fin → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
165 |
33 164
|
syl |
⊢ ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ) → ( ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
166 |
165
|
3impia |
⊢ ( ( dom ( 𝑥 ∖ I ) ∈ Fin ∧ dom ( 𝑦 ∖ I ) ≼ dom ( 𝑥 ∖ I ) ∧ ∀ 𝑧 ( dom ( 𝑧 ∖ I ) ≺ dom ( 𝑦 ∖ I ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
167 |
|
eleq1w |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
168 |
|
eleq1w |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ↔ 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
169 |
167 168
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ↔ ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
170 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
171 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ↔ 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
172 |
170 171
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ‘ 𝑇 ) ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) ) ) |
173 |
|
difeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∖ I ) = ( 𝑧 ∖ I ) ) |
174 |
173
|
dmeqd |
⊢ ( 𝑦 = 𝑧 → dom ( 𝑦 ∖ I ) = dom ( 𝑧 ∖ I ) ) |
175 |
|
difeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∖ I ) = ( 𝑥 ∖ I ) ) |
176 |
175
|
dmeqd |
⊢ ( 𝑦 = 𝑥 → dom ( 𝑦 ∖ I ) = dom ( 𝑥 ∖ I ) ) |
177 |
31 32 166 169 172 174 176
|
indcardi |
⊢ ( dom ( 𝑥 ∖ I ) ∈ Fin → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) ) |
178 |
177
|
impcom |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ dom ( 𝑥 ∖ I ) ∈ Fin ) → 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) |
179 |
178
|
3adant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ dom ( 𝑥 ∖ I ) ∈ Fin ) → 𝑥 ∈ ( 𝐾 ‘ 𝑇 ) ) |
180 |
179
|
rabssdv |
⊢ ( 𝐷 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ⊆ ( 𝐾 ‘ 𝑇 ) ) |
181 |
29 180
|
eqssd |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝐾 ‘ 𝑇 ) = { 𝑥 ∈ 𝐵 ∣ dom ( 𝑥 ∖ I ) ∈ Fin } ) |