| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfac.b |
|- B = ( Base ` G ) |
| 2 |
|
ablfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
| 3 |
|
ablfac.1 |
|- ( ph -> G e. Abel ) |
| 4 |
|
ablfac.2 |
|- ( ph -> B e. Fin ) |
| 5 |
|
ablfac.o |
|- O = ( od ` G ) |
| 6 |
|
ablfac.a |
|- A = { w e. Prime | w || ( # ` B ) } |
| 7 |
|
ablfac.s |
|- S = ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
| 8 |
|
ablfac.w |
|- W = ( g e. ( SubGrp ` G ) |-> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } ) |
| 9 |
|
fzfid |
|- ( ph -> ( 1 ... ( # ` B ) ) e. Fin ) |
| 10 |
|
prmnn |
|- ( w e. Prime -> w e. NN ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> w e. NN ) |
| 12 |
|
prmz |
|- ( w e. Prime -> w e. ZZ ) |
| 13 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 14 |
1
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
| 15 |
3 13 14
|
3syl |
|- ( ph -> B =/= (/) ) |
| 16 |
|
hashnncl |
|- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 17 |
4 16
|
syl |
|- ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 18 |
15 17
|
mpbird |
|- ( ph -> ( # ` B ) e. NN ) |
| 19 |
|
dvdsle |
|- ( ( w e. ZZ /\ ( # ` B ) e. NN ) -> ( w || ( # ` B ) -> w <_ ( # ` B ) ) ) |
| 20 |
12 18 19
|
syl2anr |
|- ( ( ph /\ w e. Prime ) -> ( w || ( # ` B ) -> w <_ ( # ` B ) ) ) |
| 21 |
20
|
3impia |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> w <_ ( # ` B ) ) |
| 22 |
18
|
nnzd |
|- ( ph -> ( # ` B ) e. ZZ ) |
| 23 |
22
|
3ad2ant1 |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> ( # ` B ) e. ZZ ) |
| 24 |
|
fznn |
|- ( ( # ` B ) e. ZZ -> ( w e. ( 1 ... ( # ` B ) ) <-> ( w e. NN /\ w <_ ( # ` B ) ) ) ) |
| 25 |
23 24
|
syl |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> ( w e. ( 1 ... ( # ` B ) ) <-> ( w e. NN /\ w <_ ( # ` B ) ) ) ) |
| 26 |
11 21 25
|
mpbir2and |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> w e. ( 1 ... ( # ` B ) ) ) |
| 27 |
26
|
rabssdv |
|- ( ph -> { w e. Prime | w || ( # ` B ) } C_ ( 1 ... ( # ` B ) ) ) |
| 28 |
6 27
|
eqsstrid |
|- ( ph -> A C_ ( 1 ... ( # ` B ) ) ) |
| 29 |
9 28
|
ssfid |
|- ( ph -> A e. Fin ) |
| 30 |
|
dfin5 |
|- ( Word C i^i ( W ` ( S ` q ) ) ) = { y e. Word C | y e. ( W ` ( S ` q ) ) } |
| 31 |
6
|
ssrab3 |
|- A C_ Prime |
| 32 |
31
|
a1i |
|- ( ph -> A C_ Prime ) |
| 33 |
1 5 7 3 4 32
|
ablfac1b |
|- ( ph -> G dom DProd S ) |
| 34 |
1
|
fvexi |
|- B e. _V |
| 35 |
34
|
rabex |
|- { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. _V |
| 36 |
35 7
|
dmmpti |
|- dom S = A |
| 37 |
36
|
a1i |
|- ( ph -> dom S = A ) |
| 38 |
33 37
|
dprdf2 |
|- ( ph -> S : A --> ( SubGrp ` G ) ) |
| 39 |
38
|
ffvelcdmda |
|- ( ( ph /\ q e. A ) -> ( S ` q ) e. ( SubGrp ` G ) ) |
| 40 |
1 2 3 4 5 6 7 8
|
ablfaclem1 |
|- ( ( S ` q ) e. ( SubGrp ` G ) -> ( W ` ( S ` q ) ) = { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) } ) |
| 41 |
39 40
|
syl |
|- ( ( ph /\ q e. A ) -> ( W ` ( S ` q ) ) = { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) } ) |
| 42 |
|
ssrab2 |
|- { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) } C_ Word C |
| 43 |
41 42
|
eqsstrdi |
|- ( ( ph /\ q e. A ) -> ( W ` ( S ` q ) ) C_ Word C ) |
| 44 |
|
sseqin2 |
|- ( ( W ` ( S ` q ) ) C_ Word C <-> ( Word C i^i ( W ` ( S ` q ) ) ) = ( W ` ( S ` q ) ) ) |
| 45 |
43 44
|
sylib |
|- ( ( ph /\ q e. A ) -> ( Word C i^i ( W ` ( S ` q ) ) ) = ( W ` ( S ` q ) ) ) |
| 46 |
30 45
|
eqtr3id |
|- ( ( ph /\ q e. A ) -> { y e. Word C | y e. ( W ` ( S ` q ) ) } = ( W ` ( S ` q ) ) ) |
| 47 |
46 41
|
eqtrd |
|- ( ( ph /\ q e. A ) -> { y e. Word C | y e. ( W ` ( S ` q ) ) } = { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) } ) |
| 48 |
|
eqid |
|- ( Base ` ( G |`s ( S ` q ) ) ) = ( Base ` ( G |`s ( S ` q ) ) ) |
| 49 |
|
eqid |
|- { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } = { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } |
| 50 |
|
eqid |
|- ( G |`s ( S ` q ) ) = ( G |`s ( S ` q ) ) |
| 51 |
50
|
subgabl |
|- ( ( G e. Abel /\ ( S ` q ) e. ( SubGrp ` G ) ) -> ( G |`s ( S ` q ) ) e. Abel ) |
| 52 |
3 39 51
|
syl2an2r |
|- ( ( ph /\ q e. A ) -> ( G |`s ( S ` q ) ) e. Abel ) |
| 53 |
32
|
sselda |
|- ( ( ph /\ q e. A ) -> q e. Prime ) |
| 54 |
50
|
subgbas |
|- ( ( S ` q ) e. ( SubGrp ` G ) -> ( S ` q ) = ( Base ` ( G |`s ( S ` q ) ) ) ) |
| 55 |
39 54
|
syl |
|- ( ( ph /\ q e. A ) -> ( S ` q ) = ( Base ` ( G |`s ( S ` q ) ) ) ) |
| 56 |
55
|
fveq2d |
|- ( ( ph /\ q e. A ) -> ( # ` ( S ` q ) ) = ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) ) |
| 57 |
1 5 7 3 4 32
|
ablfac1a |
|- ( ( ph /\ q e. A ) -> ( # ` ( S ` q ) ) = ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 58 |
56 57
|
eqtr3d |
|- ( ( ph /\ q e. A ) -> ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) = ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 59 |
58
|
oveq2d |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) ) = ( q pCnt ( q ^ ( q pCnt ( # ` B ) ) ) ) ) |
| 60 |
18
|
adantr |
|- ( ( ph /\ q e. A ) -> ( # ` B ) e. NN ) |
| 61 |
53 60
|
pccld |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` B ) ) e. NN0 ) |
| 62 |
61
|
nn0zd |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` B ) ) e. ZZ ) |
| 63 |
|
pcid |
|- ( ( q e. Prime /\ ( q pCnt ( # ` B ) ) e. ZZ ) -> ( q pCnt ( q ^ ( q pCnt ( # ` B ) ) ) ) = ( q pCnt ( # ` B ) ) ) |
| 64 |
53 62 63
|
syl2anc |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( q ^ ( q pCnt ( # ` B ) ) ) ) = ( q pCnt ( # ` B ) ) ) |
| 65 |
59 64
|
eqtrd |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) ) = ( q pCnt ( # ` B ) ) ) |
| 66 |
65
|
oveq2d |
|- ( ( ph /\ q e. A ) -> ( q ^ ( q pCnt ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) ) ) = ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 67 |
58 66
|
eqtr4d |
|- ( ( ph /\ q e. A ) -> ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) = ( q ^ ( q pCnt ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) ) ) ) |
| 68 |
50
|
subggrp |
|- ( ( S ` q ) e. ( SubGrp ` G ) -> ( G |`s ( S ` q ) ) e. Grp ) |
| 69 |
39 68
|
syl |
|- ( ( ph /\ q e. A ) -> ( G |`s ( S ` q ) ) e. Grp ) |
| 70 |
4
|
adantr |
|- ( ( ph /\ q e. A ) -> B e. Fin ) |
| 71 |
1
|
subgss |
|- ( ( S ` q ) e. ( SubGrp ` G ) -> ( S ` q ) C_ B ) |
| 72 |
39 71
|
syl |
|- ( ( ph /\ q e. A ) -> ( S ` q ) C_ B ) |
| 73 |
70 72
|
ssfid |
|- ( ( ph /\ q e. A ) -> ( S ` q ) e. Fin ) |
| 74 |
55 73
|
eqeltrrd |
|- ( ( ph /\ q e. A ) -> ( Base ` ( G |`s ( S ` q ) ) ) e. Fin ) |
| 75 |
48
|
pgpfi2 |
|- ( ( ( G |`s ( S ` q ) ) e. Grp /\ ( Base ` ( G |`s ( S ` q ) ) ) e. Fin ) -> ( q pGrp ( G |`s ( S ` q ) ) <-> ( q e. Prime /\ ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) = ( q ^ ( q pCnt ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) ) ) ) ) ) |
| 76 |
69 74 75
|
syl2anc |
|- ( ( ph /\ q e. A ) -> ( q pGrp ( G |`s ( S ` q ) ) <-> ( q e. Prime /\ ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) = ( q ^ ( q pCnt ( # ` ( Base ` ( G |`s ( S ` q ) ) ) ) ) ) ) ) ) |
| 77 |
53 67 76
|
mpbir2and |
|- ( ( ph /\ q e. A ) -> q pGrp ( G |`s ( S ` q ) ) ) |
| 78 |
48 49 52 77 74
|
pgpfac |
|- ( ( ph /\ q e. A ) -> E. s e. Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } ( ( G |`s ( S ` q ) ) dom DProd s /\ ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) ) ) |
| 79 |
|
ssrab2 |
|- { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } C_ ( SubGrp ` ( G |`s ( S ` q ) ) ) |
| 80 |
|
sswrd |
|- ( { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } C_ ( SubGrp ` ( G |`s ( S ` q ) ) ) -> Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } C_ Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) |
| 81 |
79 80
|
ax-mp |
|- Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } C_ Word ( SubGrp ` ( G |`s ( S ` q ) ) ) |
| 82 |
81
|
sseli |
|- ( s e. Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } -> s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) |
| 83 |
39
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) -> ( S ` q ) e. ( SubGrp ` G ) ) |
| 84 |
83
|
adantr |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> ( S ` q ) e. ( SubGrp ` G ) ) |
| 85 |
50
|
subgdmdprd |
|- ( ( S ` q ) e. ( SubGrp ` G ) -> ( ( G |`s ( S ` q ) ) dom DProd s <-> ( G dom DProd s /\ ran s C_ ~P ( S ` q ) ) ) ) |
| 86 |
83 85
|
syl |
|- ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) -> ( ( G |`s ( S ` q ) ) dom DProd s <-> ( G dom DProd s /\ ran s C_ ~P ( S ` q ) ) ) ) |
| 87 |
86
|
simprbda |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> G dom DProd s ) |
| 88 |
86
|
simplbda |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> ran s C_ ~P ( S ` q ) ) |
| 89 |
50 84 87 88
|
subgdprd |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> ( ( G |`s ( S ` q ) ) DProd s ) = ( G DProd s ) ) |
| 90 |
55
|
ad2antrr |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> ( S ` q ) = ( Base ` ( G |`s ( S ` q ) ) ) ) |
| 91 |
90
|
eqcomd |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> ( Base ` ( G |`s ( S ` q ) ) ) = ( S ` q ) ) |
| 92 |
89 91
|
eqeq12d |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> ( ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) <-> ( G DProd s ) = ( S ` q ) ) ) |
| 93 |
92
|
biimpd |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> ( ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) -> ( G DProd s ) = ( S ` q ) ) ) |
| 94 |
93 87
|
jctild |
|- ( ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) /\ ( G |`s ( S ` q ) ) dom DProd s ) -> ( ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) -> ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) ) ) |
| 95 |
94
|
expimpd |
|- ( ( ( ph /\ q e. A ) /\ s e. Word ( SubGrp ` ( G |`s ( S ` q ) ) ) ) -> ( ( ( G |`s ( S ` q ) ) dom DProd s /\ ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) ) -> ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) ) ) |
| 96 |
82 95
|
sylan2 |
|- ( ( ( ph /\ q e. A ) /\ s e. Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } ) -> ( ( ( G |`s ( S ` q ) ) dom DProd s /\ ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) ) -> ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) ) ) |
| 97 |
|
oveq2 |
|- ( r = y -> ( ( G |`s ( S ` q ) ) |`s r ) = ( ( G |`s ( S ` q ) ) |`s y ) ) |
| 98 |
97
|
eleq1d |
|- ( r = y -> ( ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) <-> ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) ) |
| 99 |
98
|
cbvrabv |
|- { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } = { y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) } |
| 100 |
50
|
subsubg |
|- ( ( S ` q ) e. ( SubGrp ` G ) -> ( y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) <-> ( y e. ( SubGrp ` G ) /\ y C_ ( S ` q ) ) ) ) |
| 101 |
39 100
|
syl |
|- ( ( ph /\ q e. A ) -> ( y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) <-> ( y e. ( SubGrp ` G ) /\ y C_ ( S ` q ) ) ) ) |
| 102 |
101
|
simprbda |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) ) -> y e. ( SubGrp ` G ) ) |
| 103 |
102
|
3adant3 |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) /\ ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) -> y e. ( SubGrp ` G ) ) |
| 104 |
39
|
3ad2ant1 |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) /\ ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) -> ( S ` q ) e. ( SubGrp ` G ) ) |
| 105 |
101
|
simplbda |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) ) -> y C_ ( S ` q ) ) |
| 106 |
105
|
3adant3 |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) /\ ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) -> y C_ ( S ` q ) ) |
| 107 |
|
ressabs |
|- ( ( ( S ` q ) e. ( SubGrp ` G ) /\ y C_ ( S ` q ) ) -> ( ( G |`s ( S ` q ) ) |`s y ) = ( G |`s y ) ) |
| 108 |
104 106 107
|
syl2anc |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) /\ ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) -> ( ( G |`s ( S ` q ) ) |`s y ) = ( G |`s y ) ) |
| 109 |
|
simp3 |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) /\ ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) -> ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) |
| 110 |
108 109
|
eqeltrrd |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) /\ ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) -> ( G |`s y ) e. ( CycGrp i^i ran pGrp ) ) |
| 111 |
|
oveq2 |
|- ( r = y -> ( G |`s r ) = ( G |`s y ) ) |
| 112 |
111
|
eleq1d |
|- ( r = y -> ( ( G |`s r ) e. ( CycGrp i^i ran pGrp ) <-> ( G |`s y ) e. ( CycGrp i^i ran pGrp ) ) ) |
| 113 |
112 2
|
elrab2 |
|- ( y e. C <-> ( y e. ( SubGrp ` G ) /\ ( G |`s y ) e. ( CycGrp i^i ran pGrp ) ) ) |
| 114 |
103 110 113
|
sylanbrc |
|- ( ( ( ph /\ q e. A ) /\ y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) /\ ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) ) -> y e. C ) |
| 115 |
114
|
rabssdv |
|- ( ( ph /\ q e. A ) -> { y e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s y ) e. ( CycGrp i^i ran pGrp ) } C_ C ) |
| 116 |
99 115
|
eqsstrid |
|- ( ( ph /\ q e. A ) -> { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } C_ C ) |
| 117 |
|
sswrd |
|- ( { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } C_ C -> Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } C_ Word C ) |
| 118 |
116 117
|
syl |
|- ( ( ph /\ q e. A ) -> Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } C_ Word C ) |
| 119 |
118
|
sselda |
|- ( ( ( ph /\ q e. A ) /\ s e. Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } ) -> s e. Word C ) |
| 120 |
96 119
|
jctild |
|- ( ( ( ph /\ q e. A ) /\ s e. Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } ) -> ( ( ( G |`s ( S ` q ) ) dom DProd s /\ ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) ) -> ( s e. Word C /\ ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) ) ) ) |
| 121 |
120
|
expimpd |
|- ( ( ph /\ q e. A ) -> ( ( s e. Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } /\ ( ( G |`s ( S ` q ) ) dom DProd s /\ ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) ) ) -> ( s e. Word C /\ ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) ) ) ) |
| 122 |
121
|
reximdv2 |
|- ( ( ph /\ q e. A ) -> ( E. s e. Word { r e. ( SubGrp ` ( G |`s ( S ` q ) ) ) | ( ( G |`s ( S ` q ) ) |`s r ) e. ( CycGrp i^i ran pGrp ) } ( ( G |`s ( S ` q ) ) dom DProd s /\ ( ( G |`s ( S ` q ) ) DProd s ) = ( Base ` ( G |`s ( S ` q ) ) ) ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) ) ) |
| 123 |
78 122
|
mpd |
|- ( ( ph /\ q e. A ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) ) |
| 124 |
|
rabn0 |
|- ( { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) } =/= (/) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) ) |
| 125 |
123 124
|
sylibr |
|- ( ( ph /\ q e. A ) -> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = ( S ` q ) ) } =/= (/) ) |
| 126 |
47 125
|
eqnetrd |
|- ( ( ph /\ q e. A ) -> { y e. Word C | y e. ( W ` ( S ` q ) ) } =/= (/) ) |
| 127 |
|
rabn0 |
|- ( { y e. Word C | y e. ( W ` ( S ` q ) ) } =/= (/) <-> E. y e. Word C y e. ( W ` ( S ` q ) ) ) |
| 128 |
126 127
|
sylib |
|- ( ( ph /\ q e. A ) -> E. y e. Word C y e. ( W ` ( S ` q ) ) ) |
| 129 |
128
|
ralrimiva |
|- ( ph -> A. q e. A E. y e. Word C y e. ( W ` ( S ` q ) ) ) |
| 130 |
|
eleq1 |
|- ( y = ( f ` q ) -> ( y e. ( W ` ( S ` q ) ) <-> ( f ` q ) e. ( W ` ( S ` q ) ) ) ) |
| 131 |
130
|
ac6sfi |
|- ( ( A e. Fin /\ A. q e. A E. y e. Word C y e. ( W ` ( S ` q ) ) ) -> E. f ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) |
| 132 |
29 129 131
|
syl2anc |
|- ( ph -> E. f ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) |
| 133 |
|
sneq |
|- ( q = y -> { q } = { y } ) |
| 134 |
|
fveq2 |
|- ( q = y -> ( f ` q ) = ( f ` y ) ) |
| 135 |
134
|
dmeqd |
|- ( q = y -> dom ( f ` q ) = dom ( f ` y ) ) |
| 136 |
133 135
|
xpeq12d |
|- ( q = y -> ( { q } X. dom ( f ` q ) ) = ( { y } X. dom ( f ` y ) ) ) |
| 137 |
136
|
cbviunv |
|- U_ q e. A ( { q } X. dom ( f ` q ) ) = U_ y e. A ( { y } X. dom ( f ` y ) ) |
| 138 |
|
snfi |
|- { y } e. Fin |
| 139 |
|
simprl |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> f : A --> Word C ) |
| 140 |
139
|
ffvelcdmda |
|- ( ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) /\ y e. A ) -> ( f ` y ) e. Word C ) |
| 141 |
|
wrdf |
|- ( ( f ` y ) e. Word C -> ( f ` y ) : ( 0 ..^ ( # ` ( f ` y ) ) ) --> C ) |
| 142 |
|
fdm |
|- ( ( f ` y ) : ( 0 ..^ ( # ` ( f ` y ) ) ) --> C -> dom ( f ` y ) = ( 0 ..^ ( # ` ( f ` y ) ) ) ) |
| 143 |
140 141 142
|
3syl |
|- ( ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) /\ y e. A ) -> dom ( f ` y ) = ( 0 ..^ ( # ` ( f ` y ) ) ) ) |
| 144 |
|
fzofi |
|- ( 0 ..^ ( # ` ( f ` y ) ) ) e. Fin |
| 145 |
143 144
|
eqeltrdi |
|- ( ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) /\ y e. A ) -> dom ( f ` y ) e. Fin ) |
| 146 |
|
xpfi |
|- ( ( { y } e. Fin /\ dom ( f ` y ) e. Fin ) -> ( { y } X. dom ( f ` y ) ) e. Fin ) |
| 147 |
138 145 146
|
sylancr |
|- ( ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) /\ y e. A ) -> ( { y } X. dom ( f ` y ) ) e. Fin ) |
| 148 |
147
|
ralrimiva |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> A. y e. A ( { y } X. dom ( f ` y ) ) e. Fin ) |
| 149 |
|
iunfi |
|- ( ( A e. Fin /\ A. y e. A ( { y } X. dom ( f ` y ) ) e. Fin ) -> U_ y e. A ( { y } X. dom ( f ` y ) ) e. Fin ) |
| 150 |
29 148 149
|
syl2an2r |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> U_ y e. A ( { y } X. dom ( f ` y ) ) e. Fin ) |
| 151 |
137 150
|
eqeltrid |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> U_ q e. A ( { q } X. dom ( f ` q ) ) e. Fin ) |
| 152 |
|
hashcl |
|- ( U_ q e. A ( { q } X. dom ( f ` q ) ) e. Fin -> ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) e. NN0 ) |
| 153 |
|
hashfzo0 |
|- ( ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) e. NN0 -> ( # ` ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) ) = ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) |
| 154 |
151 152 153
|
3syl |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> ( # ` ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) ) = ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) |
| 155 |
|
fzofi |
|- ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) e. Fin |
| 156 |
|
hashen |
|- ( ( ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) e. Fin /\ U_ q e. A ( { q } X. dom ( f ` q ) ) e. Fin ) -> ( ( # ` ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) ) = ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) <-> ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) ~~ U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) |
| 157 |
155 151 156
|
sylancr |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> ( ( # ` ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) ) = ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) <-> ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) ~~ U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) |
| 158 |
154 157
|
mpbid |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) ~~ U_ q e. A ( { q } X. dom ( f ` q ) ) ) |
| 159 |
|
bren |
|- ( ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) ~~ U_ q e. A ( { q } X. dom ( f ` q ) ) <-> E. h h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) |
| 160 |
158 159
|
sylib |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> E. h h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) |
| 161 |
3
|
adantr |
|- ( ( ph /\ ( ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) /\ h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -> G e. Abel ) |
| 162 |
4
|
adantr |
|- ( ( ph /\ ( ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) /\ h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -> B e. Fin ) |
| 163 |
|
breq1 |
|- ( w = a -> ( w || ( # ` B ) <-> a || ( # ` B ) ) ) |
| 164 |
163
|
cbvrabv |
|- { w e. Prime | w || ( # ` B ) } = { a e. Prime | a || ( # ` B ) } |
| 165 |
6 164
|
eqtri |
|- A = { a e. Prime | a || ( # ` B ) } |
| 166 |
|
fveq2 |
|- ( x = c -> ( O ` x ) = ( O ` c ) ) |
| 167 |
166
|
breq1d |
|- ( x = c -> ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) <-> ( O ` c ) || ( p ^ ( p pCnt ( # ` B ) ) ) ) ) |
| 168 |
167
|
cbvrabv |
|- { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } = { c e. B | ( O ` c ) || ( p ^ ( p pCnt ( # ` B ) ) ) } |
| 169 |
|
id |
|- ( p = b -> p = b ) |
| 170 |
|
oveq1 |
|- ( p = b -> ( p pCnt ( # ` B ) ) = ( b pCnt ( # ` B ) ) ) |
| 171 |
169 170
|
oveq12d |
|- ( p = b -> ( p ^ ( p pCnt ( # ` B ) ) ) = ( b ^ ( b pCnt ( # ` B ) ) ) ) |
| 172 |
171
|
breq2d |
|- ( p = b -> ( ( O ` c ) || ( p ^ ( p pCnt ( # ` B ) ) ) <-> ( O ` c ) || ( b ^ ( b pCnt ( # ` B ) ) ) ) ) |
| 173 |
172
|
rabbidv |
|- ( p = b -> { c e. B | ( O ` c ) || ( p ^ ( p pCnt ( # ` B ) ) ) } = { c e. B | ( O ` c ) || ( b ^ ( b pCnt ( # ` B ) ) ) } ) |
| 174 |
168 173
|
eqtrid |
|- ( p = b -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } = { c e. B | ( O ` c ) || ( b ^ ( b pCnt ( # ` B ) ) ) } ) |
| 175 |
174
|
cbvmptv |
|- ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) = ( b e. A |-> { c e. B | ( O ` c ) || ( b ^ ( b pCnt ( # ` B ) ) ) } ) |
| 176 |
7 175
|
eqtri |
|- S = ( b e. A |-> { c e. B | ( O ` c ) || ( b ^ ( b pCnt ( # ` B ) ) ) } ) |
| 177 |
|
breq2 |
|- ( s = t -> ( G dom DProd s <-> G dom DProd t ) ) |
| 178 |
|
oveq2 |
|- ( s = t -> ( G DProd s ) = ( G DProd t ) ) |
| 179 |
178
|
eqeq1d |
|- ( s = t -> ( ( G DProd s ) = g <-> ( G DProd t ) = g ) ) |
| 180 |
177 179
|
anbi12d |
|- ( s = t -> ( ( G dom DProd s /\ ( G DProd s ) = g ) <-> ( G dom DProd t /\ ( G DProd t ) = g ) ) ) |
| 181 |
180
|
cbvrabv |
|- { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } = { t e. Word C | ( G dom DProd t /\ ( G DProd t ) = g ) } |
| 182 |
181
|
mpteq2i |
|- ( g e. ( SubGrp ` G ) |-> { s e. Word C | ( G dom DProd s /\ ( G DProd s ) = g ) } ) = ( g e. ( SubGrp ` G ) |-> { t e. Word C | ( G dom DProd t /\ ( G DProd t ) = g ) } ) |
| 183 |
8 182
|
eqtri |
|- W = ( g e. ( SubGrp ` G ) |-> { t e. Word C | ( G dom DProd t /\ ( G DProd t ) = g ) } ) |
| 184 |
|
simprll |
|- ( ( ph /\ ( ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) /\ h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -> f : A --> Word C ) |
| 185 |
|
simprlr |
|- ( ( ph /\ ( ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) /\ h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -> A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) |
| 186 |
|
2fveq3 |
|- ( q = y -> ( W ` ( S ` q ) ) = ( W ` ( S ` y ) ) ) |
| 187 |
134 186
|
eleq12d |
|- ( q = y -> ( ( f ` q ) e. ( W ` ( S ` q ) ) <-> ( f ` y ) e. ( W ` ( S ` y ) ) ) ) |
| 188 |
187
|
cbvralvw |
|- ( A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) <-> A. y e. A ( f ` y ) e. ( W ` ( S ` y ) ) ) |
| 189 |
185 188
|
sylib |
|- ( ( ph /\ ( ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) /\ h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -> A. y e. A ( f ` y ) e. ( W ` ( S ` y ) ) ) |
| 190 |
|
simprr |
|- ( ( ph /\ ( ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) /\ h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -> h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) |
| 191 |
1 2 161 162 5 165 176 183 184 189 137 190
|
ablfaclem2 |
|- ( ( ph /\ ( ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) /\ h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -> ( W ` B ) =/= (/) ) |
| 192 |
191
|
expr |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> ( h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) -> ( W ` B ) =/= (/) ) ) |
| 193 |
192
|
exlimdv |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> ( E. h h : ( 0 ..^ ( # ` U_ q e. A ( { q } X. dom ( f ` q ) ) ) ) -1-1-onto-> U_ q e. A ( { q } X. dom ( f ` q ) ) -> ( W ` B ) =/= (/) ) ) |
| 194 |
160 193
|
mpd |
|- ( ( ph /\ ( f : A --> Word C /\ A. q e. A ( f ` q ) e. ( W ` ( S ` q ) ) ) ) -> ( W ` B ) =/= (/) ) |
| 195 |
132 194
|
exlimddv |
|- ( ph -> ( W ` B ) =/= (/) ) |