| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axdc4lem.1 |
|- A e. _V |
| 2 |
|
axdc4lem.2 |
|- G = ( n e. _om , x e. A |-> ( { suc n } X. ( n F x ) ) ) |
| 3 |
|
peano1 |
|- (/) e. _om |
| 4 |
|
opelxpi |
|- ( ( (/) e. _om /\ C e. A ) -> <. (/) , C >. e. ( _om X. A ) ) |
| 5 |
3 4
|
mpan |
|- ( C e. A -> <. (/) , C >. e. ( _om X. A ) ) |
| 6 |
|
simp2 |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> n e. _om ) |
| 7 |
|
fovcdm |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( n F x ) e. ( ~P A \ { (/) } ) ) |
| 8 |
|
peano2 |
|- ( n e. _om -> suc n e. _om ) |
| 9 |
8
|
snssd |
|- ( n e. _om -> { suc n } C_ _om ) |
| 10 |
|
eldifi |
|- ( ( n F x ) e. ( ~P A \ { (/) } ) -> ( n F x ) e. ~P A ) |
| 11 |
1
|
elpw2 |
|- ( ( n F x ) e. ~P A <-> ( n F x ) C_ A ) |
| 12 |
|
xpss12 |
|- ( ( { suc n } C_ _om /\ ( n F x ) C_ A ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
| 13 |
11 12
|
sylan2b |
|- ( ( { suc n } C_ _om /\ ( n F x ) e. ~P A ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
| 14 |
9 10 13
|
syl2an |
|- ( ( n e. _om /\ ( n F x ) e. ( ~P A \ { (/) } ) ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
| 15 |
|
snex |
|- { suc n } e. _V |
| 16 |
|
ovex |
|- ( n F x ) e. _V |
| 17 |
15 16
|
xpex |
|- ( { suc n } X. ( n F x ) ) e. _V |
| 18 |
17
|
elpw |
|- ( ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) <-> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
| 19 |
14 18
|
sylibr |
|- ( ( n e. _om /\ ( n F x ) e. ( ~P A \ { (/) } ) ) -> ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) ) |
| 20 |
6 7 19
|
syl2anc |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) ) |
| 21 |
|
eldifn |
|- ( ( n F x ) e. ( ~P A \ { (/) } ) -> -. ( n F x ) e. { (/) } ) |
| 22 |
16
|
elsn |
|- ( ( n F x ) e. { (/) } <-> ( n F x ) = (/) ) |
| 23 |
22
|
necon3bbii |
|- ( -. ( n F x ) e. { (/) } <-> ( n F x ) =/= (/) ) |
| 24 |
|
vex |
|- n e. _V |
| 25 |
24
|
sucex |
|- suc n e. _V |
| 26 |
25
|
snnz |
|- { suc n } =/= (/) |
| 27 |
|
xpnz |
|- ( ( { suc n } =/= (/) /\ ( n F x ) =/= (/) ) <-> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 28 |
27
|
biimpi |
|- ( ( { suc n } =/= (/) /\ ( n F x ) =/= (/) ) -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 29 |
26 28
|
mpan |
|- ( ( n F x ) =/= (/) -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 30 |
23 29
|
sylbi |
|- ( -. ( n F x ) e. { (/) } -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 31 |
17
|
elsn |
|- ( ( { suc n } X. ( n F x ) ) e. { (/) } <-> ( { suc n } X. ( n F x ) ) = (/) ) |
| 32 |
31
|
necon3bbii |
|- ( -. ( { suc n } X. ( n F x ) ) e. { (/) } <-> ( { suc n } X. ( n F x ) ) =/= (/) ) |
| 33 |
30 32
|
sylibr |
|- ( -. ( n F x ) e. { (/) } -> -. ( { suc n } X. ( n F x ) ) e. { (/) } ) |
| 34 |
7 21 33
|
3syl |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> -. ( { suc n } X. ( n F x ) ) e. { (/) } ) |
| 35 |
20 34
|
eldifd |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) |
| 36 |
35
|
3expib |
|- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> ( ( n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) ) |
| 37 |
36
|
ralrimivv |
|- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> A. n e. _om A. x e. A ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) |
| 38 |
2
|
fmpo |
|- ( A. n e. _om A. x e. A ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) <-> G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) |
| 39 |
37 38
|
sylib |
|- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) |
| 40 |
|
dcomex |
|- _om e. _V |
| 41 |
40 1
|
xpex |
|- ( _om X. A ) e. _V |
| 42 |
41
|
axdc3 |
|- ( ( <. (/) , C >. e. ( _om X. A ) /\ G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) -> E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
| 43 |
5 39 42
|
syl2an |
|- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
| 44 |
|
2ndcof |
|- ( h : _om --> ( _om X. A ) -> ( 2nd o. h ) : _om --> A ) |
| 45 |
44
|
3ad2ant1 |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( 2nd o. h ) : _om --> A ) |
| 46 |
45
|
adantl |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( 2nd o. h ) : _om --> A ) |
| 47 |
|
fex2 |
|- ( ( ( 2nd o. h ) : _om --> A /\ _om e. _V /\ A e. _V ) -> ( 2nd o. h ) e. _V ) |
| 48 |
40 1 47
|
mp3an23 |
|- ( ( 2nd o. h ) : _om --> A -> ( 2nd o. h ) e. _V ) |
| 49 |
46 48
|
syl |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( 2nd o. h ) e. _V ) |
| 50 |
|
fvco3 |
|- ( ( h : _om --> ( _om X. A ) /\ (/) e. _om ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
| 51 |
3 50
|
mpan2 |
|- ( h : _om --> ( _om X. A ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
| 52 |
51
|
3ad2ant1 |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
| 53 |
|
fveq2 |
|- ( ( h ` (/) ) = <. (/) , C >. -> ( 2nd ` ( h ` (/) ) ) = ( 2nd ` <. (/) , C >. ) ) |
| 54 |
53
|
3ad2ant2 |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( 2nd ` ( h ` (/) ) ) = ( 2nd ` <. (/) , C >. ) ) |
| 55 |
52 54
|
eqtrd |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` <. (/) , C >. ) ) |
| 56 |
|
op2ndg |
|- ( ( (/) e. _om /\ C e. A ) -> ( 2nd ` <. (/) , C >. ) = C ) |
| 57 |
3 56
|
mpan |
|- ( C e. A -> ( 2nd ` <. (/) , C >. ) = C ) |
| 58 |
55 57
|
sylan9eqr |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( 2nd o. h ) ` (/) ) = C ) |
| 59 |
|
nfv |
|- F/ k C e. A |
| 60 |
|
nfv |
|- F/ k h : _om --> ( _om X. A ) |
| 61 |
|
nfv |
|- F/ k ( h ` (/) ) = <. (/) , C >. |
| 62 |
|
nfra1 |
|- F/ k A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) |
| 63 |
60 61 62
|
nf3an |
|- F/ k ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
| 64 |
59 63
|
nfan |
|- F/ k ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
| 65 |
|
fveq2 |
|- ( m = (/) -> ( h ` m ) = ( h ` (/) ) ) |
| 66 |
|
opeq1 |
|- ( m = (/) -> <. m , z >. = <. (/) , z >. ) |
| 67 |
65 66
|
eqeq12d |
|- ( m = (/) -> ( ( h ` m ) = <. m , z >. <-> ( h ` (/) ) = <. (/) , z >. ) ) |
| 68 |
67
|
exbidv |
|- ( m = (/) -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` (/) ) = <. (/) , z >. ) ) |
| 69 |
|
fveq2 |
|- ( m = i -> ( h ` m ) = ( h ` i ) ) |
| 70 |
|
opeq1 |
|- ( m = i -> <. m , z >. = <. i , z >. ) |
| 71 |
69 70
|
eqeq12d |
|- ( m = i -> ( ( h ` m ) = <. m , z >. <-> ( h ` i ) = <. i , z >. ) ) |
| 72 |
71
|
exbidv |
|- ( m = i -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` i ) = <. i , z >. ) ) |
| 73 |
|
fveq2 |
|- ( m = suc i -> ( h ` m ) = ( h ` suc i ) ) |
| 74 |
|
opeq1 |
|- ( m = suc i -> <. m , z >. = <. suc i , z >. ) |
| 75 |
73 74
|
eqeq12d |
|- ( m = suc i -> ( ( h ` m ) = <. m , z >. <-> ( h ` suc i ) = <. suc i , z >. ) ) |
| 76 |
75
|
exbidv |
|- ( m = suc i -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` suc i ) = <. suc i , z >. ) ) |
| 77 |
|
opeq2 |
|- ( z = C -> <. (/) , z >. = <. (/) , C >. ) |
| 78 |
77
|
eqeq2d |
|- ( z = C -> ( ( h ` (/) ) = <. (/) , z >. <-> ( h ` (/) ) = <. (/) , C >. ) ) |
| 79 |
78
|
spcegv |
|- ( C e. A -> ( ( h ` (/) ) = <. (/) , C >. -> E. z ( h ` (/) ) = <. (/) , z >. ) ) |
| 80 |
79
|
imp |
|- ( ( C e. A /\ ( h ` (/) ) = <. (/) , C >. ) -> E. z ( h ` (/) ) = <. (/) , z >. ) |
| 81 |
80
|
3ad2antr2 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. z ( h ` (/) ) = <. (/) , z >. ) |
| 82 |
|
fveq2 |
|- ( ( h ` i ) = <. i , z >. -> ( G ` ( h ` i ) ) = ( G ` <. i , z >. ) ) |
| 83 |
|
df-ov |
|- ( i G z ) = ( G ` <. i , z >. ) |
| 84 |
82 83
|
eqtr4di |
|- ( ( h ` i ) = <. i , z >. -> ( G ` ( h ` i ) ) = ( i G z ) ) |
| 85 |
84
|
adantl |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( G ` ( h ` i ) ) = ( i G z ) ) |
| 86 |
|
simplr |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> i e. _om ) |
| 87 |
|
ffvelcdm |
|- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( h ` i ) e. ( _om X. A ) ) |
| 88 |
|
eleq1 |
|- ( ( h ` i ) = <. i , z >. -> ( ( h ` i ) e. ( _om X. A ) <-> <. i , z >. e. ( _om X. A ) ) ) |
| 89 |
|
opelxp2 |
|- ( <. i , z >. e. ( _om X. A ) -> z e. A ) |
| 90 |
88 89
|
biimtrdi |
|- ( ( h ` i ) = <. i , z >. -> ( ( h ` i ) e. ( _om X. A ) -> z e. A ) ) |
| 91 |
87 90
|
mpan9 |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> z e. A ) |
| 92 |
|
suceq |
|- ( n = i -> suc n = suc i ) |
| 93 |
92
|
sneqd |
|- ( n = i -> { suc n } = { suc i } ) |
| 94 |
|
oveq1 |
|- ( n = i -> ( n F x ) = ( i F x ) ) |
| 95 |
93 94
|
xpeq12d |
|- ( n = i -> ( { suc n } X. ( n F x ) ) = ( { suc i } X. ( i F x ) ) ) |
| 96 |
|
oveq2 |
|- ( x = z -> ( i F x ) = ( i F z ) ) |
| 97 |
96
|
xpeq2d |
|- ( x = z -> ( { suc i } X. ( i F x ) ) = ( { suc i } X. ( i F z ) ) ) |
| 98 |
|
snex |
|- { suc i } e. _V |
| 99 |
|
ovex |
|- ( i F z ) e. _V |
| 100 |
98 99
|
xpex |
|- ( { suc i } X. ( i F z ) ) e. _V |
| 101 |
95 97 2 100
|
ovmpo |
|- ( ( i e. _om /\ z e. A ) -> ( i G z ) = ( { suc i } X. ( i F z ) ) ) |
| 102 |
86 91 101
|
syl2anc |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( i G z ) = ( { suc i } X. ( i F z ) ) ) |
| 103 |
85 102
|
eqtrd |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) ) |
| 104 |
|
suceq |
|- ( k = i -> suc k = suc i ) |
| 105 |
104
|
fveq2d |
|- ( k = i -> ( h ` suc k ) = ( h ` suc i ) ) |
| 106 |
|
2fveq3 |
|- ( k = i -> ( G ` ( h ` k ) ) = ( G ` ( h ` i ) ) ) |
| 107 |
105 106
|
eleq12d |
|- ( k = i -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
| 108 |
107
|
rspcv |
|- ( i e. _om -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
| 109 |
108
|
ad2antlr |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
| 110 |
|
eleq2 |
|- ( ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) <-> ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) ) ) |
| 111 |
|
elxp |
|- ( ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) <-> E. s E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) ) |
| 112 |
|
velsn |
|- ( s e. { suc i } <-> s = suc i ) |
| 113 |
|
opeq1 |
|- ( s = suc i -> <. s , t >. = <. suc i , t >. ) |
| 114 |
112 113
|
sylbi |
|- ( s e. { suc i } -> <. s , t >. = <. suc i , t >. ) |
| 115 |
114
|
eqeq2d |
|- ( s e. { suc i } -> ( ( h ` suc i ) = <. s , t >. <-> ( h ` suc i ) = <. suc i , t >. ) ) |
| 116 |
115
|
biimpac |
|- ( ( ( h ` suc i ) = <. s , t >. /\ s e. { suc i } ) -> ( h ` suc i ) = <. suc i , t >. ) |
| 117 |
116
|
adantrr |
|- ( ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> ( h ` suc i ) = <. suc i , t >. ) |
| 118 |
117
|
eximi |
|- ( E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
| 119 |
118
|
exlimiv |
|- ( E. s E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
| 120 |
111 119
|
sylbi |
|- ( ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
| 121 |
110 120
|
biimtrdi |
|- ( ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) |
| 122 |
103 109 121
|
sylsyld |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) |
| 123 |
122
|
expcom |
|- ( ( h ` i ) = <. i , z >. -> ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
| 124 |
123
|
exlimiv |
|- ( E. z ( h ` i ) = <. i , z >. -> ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
| 125 |
124
|
com3l |
|- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
| 126 |
|
opeq2 |
|- ( t = z -> <. suc i , t >. = <. suc i , z >. ) |
| 127 |
126
|
eqeq2d |
|- ( t = z -> ( ( h ` suc i ) = <. suc i , t >. <-> ( h ` suc i ) = <. suc i , z >. ) ) |
| 128 |
127
|
cbvexvw |
|- ( E. t ( h ` suc i ) = <. suc i , t >. <-> E. z ( h ` suc i ) = <. suc i , z >. ) |
| 129 |
125 128
|
syl8ib |
|- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 130 |
129
|
impancom |
|- ( ( h : _om --> ( _om X. A ) /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 131 |
130
|
3adant2 |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 132 |
131
|
adantl |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 133 |
132
|
com12 |
|- ( i e. _om -> ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
| 134 |
68 72 76 81 133
|
finds2 |
|- ( m e. _om -> ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. z ( h ` m ) = <. m , z >. ) ) |
| 135 |
134
|
com12 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( m e. _om -> E. z ( h ` m ) = <. m , z >. ) ) |
| 136 |
135
|
ralrimiv |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> A. m e. _om E. z ( h ` m ) = <. m , z >. ) |
| 137 |
|
fveq2 |
|- ( m = k -> ( h ` m ) = ( h ` k ) ) |
| 138 |
|
opeq1 |
|- ( m = k -> <. m , z >. = <. k , z >. ) |
| 139 |
137 138
|
eqeq12d |
|- ( m = k -> ( ( h ` m ) = <. m , z >. <-> ( h ` k ) = <. k , z >. ) ) |
| 140 |
139
|
exbidv |
|- ( m = k -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` k ) = <. k , z >. ) ) |
| 141 |
140
|
rspccv |
|- ( A. m e. _om E. z ( h ` m ) = <. m , z >. -> ( k e. _om -> E. z ( h ` k ) = <. k , z >. ) ) |
| 142 |
136 141
|
syl |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( k e. _om -> E. z ( h ` k ) = <. k , z >. ) ) |
| 143 |
142
|
3impia |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> E. z ( h ` k ) = <. k , z >. ) |
| 144 |
|
simp21 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> h : _om --> ( _om X. A ) ) |
| 145 |
|
simp3 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> k e. _om ) |
| 146 |
|
rspa |
|- ( ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
| 147 |
146
|
3ad2antl3 |
|- ( ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
| 148 |
147
|
3adant1 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
| 149 |
|
simpl |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` k ) = <. k , z >. ) |
| 150 |
149
|
fveq2d |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` ( h ` k ) ) = ( G ` <. k , z >. ) ) |
| 151 |
|
simprr |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> k e. _om ) |
| 152 |
|
eleq1 |
|- ( ( h ` k ) = <. k , z >. -> ( ( h ` k ) e. ( _om X. A ) <-> <. k , z >. e. ( _om X. A ) ) ) |
| 153 |
|
opelxp2 |
|- ( <. k , z >. e. ( _om X. A ) -> z e. A ) |
| 154 |
152 153
|
biimtrdi |
|- ( ( h ` k ) = <. k , z >. -> ( ( h ` k ) e. ( _om X. A ) -> z e. A ) ) |
| 155 |
|
ffvelcdm |
|- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( h ` k ) e. ( _om X. A ) ) |
| 156 |
154 155
|
impel |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> z e. A ) |
| 157 |
|
df-ov |
|- ( k G z ) = ( G ` <. k , z >. ) |
| 158 |
|
suceq |
|- ( n = k -> suc n = suc k ) |
| 159 |
158
|
sneqd |
|- ( n = k -> { suc n } = { suc k } ) |
| 160 |
|
oveq1 |
|- ( n = k -> ( n F x ) = ( k F x ) ) |
| 161 |
159 160
|
xpeq12d |
|- ( n = k -> ( { suc n } X. ( n F x ) ) = ( { suc k } X. ( k F x ) ) ) |
| 162 |
|
oveq2 |
|- ( x = z -> ( k F x ) = ( k F z ) ) |
| 163 |
162
|
xpeq2d |
|- ( x = z -> ( { suc k } X. ( k F x ) ) = ( { suc k } X. ( k F z ) ) ) |
| 164 |
|
snex |
|- { suc k } e. _V |
| 165 |
|
ovex |
|- ( k F z ) e. _V |
| 166 |
164 165
|
xpex |
|- ( { suc k } X. ( k F z ) ) e. _V |
| 167 |
161 163 2 166
|
ovmpo |
|- ( ( k e. _om /\ z e. A ) -> ( k G z ) = ( { suc k } X. ( k F z ) ) ) |
| 168 |
157 167
|
eqtr3id |
|- ( ( k e. _om /\ z e. A ) -> ( G ` <. k , z >. ) = ( { suc k } X. ( k F z ) ) ) |
| 169 |
151 156 168
|
syl2anc |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` <. k , z >. ) = ( { suc k } X. ( k F z ) ) ) |
| 170 |
150 169
|
eqtrd |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` ( h ` k ) ) = ( { suc k } X. ( k F z ) ) ) |
| 171 |
170
|
eleq2d |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) ) ) |
| 172 |
|
elxp |
|- ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) <-> E. s E. t ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) ) |
| 173 |
|
peano2 |
|- ( k e. _om -> suc k e. _om ) |
| 174 |
|
fvco3 |
|- ( ( h : _om --> ( _om X. A ) /\ suc k e. _om ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
| 175 |
173 174
|
sylan2 |
|- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
| 176 |
175
|
adantl |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
| 177 |
|
simpll |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` suc k ) = <. s , t >. ) |
| 178 |
177
|
fveq2d |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( 2nd ` ( h ` suc k ) ) = ( 2nd ` <. s , t >. ) ) |
| 179 |
176 178
|
eqtrd |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` <. s , t >. ) ) |
| 180 |
|
vex |
|- s e. _V |
| 181 |
|
vex |
|- t e. _V |
| 182 |
180 181
|
op2nd |
|- ( 2nd ` <. s , t >. ) = t |
| 183 |
179 182
|
eqtrdi |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = t ) |
| 184 |
|
fvco3 |
|- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` ( h ` k ) ) ) |
| 185 |
184
|
adantl |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` ( h ` k ) ) ) |
| 186 |
|
simplr |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` k ) = <. k , z >. ) |
| 187 |
186
|
fveq2d |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( 2nd ` ( h ` k ) ) = ( 2nd ` <. k , z >. ) ) |
| 188 |
185 187
|
eqtrd |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` <. k , z >. ) ) |
| 189 |
|
vex |
|- k e. _V |
| 190 |
|
vex |
|- z e. _V |
| 191 |
189 190
|
op2nd |
|- ( 2nd ` <. k , z >. ) = z |
| 192 |
188 191
|
eqtrdi |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = z ) |
| 193 |
192
|
oveq2d |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( k F ( ( 2nd o. h ) ` k ) ) = ( k F z ) ) |
| 194 |
183 193
|
eleq12d |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) <-> t e. ( k F z ) ) ) |
| 195 |
194
|
biimprcd |
|- ( t e. ( k F z ) -> ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 196 |
195
|
exp4c |
|- ( t e. ( k F z ) -> ( ( h ` suc k ) = <. s , t >. -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) ) |
| 197 |
196
|
adantl |
|- ( ( s e. { suc k } /\ t e. ( k F z ) ) -> ( ( h ` suc k ) = <. s , t >. -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) ) |
| 198 |
197
|
impcom |
|- ( ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 199 |
198
|
exlimivv |
|- ( E. s E. t ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 200 |
172 199
|
sylbi |
|- ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 201 |
200
|
com3l |
|- ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 202 |
201
|
imp |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 203 |
171 202
|
sylbid |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 204 |
203
|
ex |
|- ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 205 |
204
|
exlimiv |
|- ( E. z ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 206 |
205
|
3imp |
|- ( ( E. z ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) /\ ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
| 207 |
143 144 145 148 206
|
syl121anc |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
| 208 |
207
|
3expia |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( k e. _om -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 209 |
64 208
|
ralrimi |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
| 210 |
46 58 209
|
3jca |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( 2nd o. h ) : _om --> A /\ ( ( 2nd o. h ) ` (/) ) = C /\ A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 211 |
|
feq1 |
|- ( g = ( 2nd o. h ) -> ( g : _om --> A <-> ( 2nd o. h ) : _om --> A ) ) |
| 212 |
|
fveq1 |
|- ( g = ( 2nd o. h ) -> ( g ` (/) ) = ( ( 2nd o. h ) ` (/) ) ) |
| 213 |
212
|
eqeq1d |
|- ( g = ( 2nd o. h ) -> ( ( g ` (/) ) = C <-> ( ( 2nd o. h ) ` (/) ) = C ) ) |
| 214 |
|
fveq1 |
|- ( g = ( 2nd o. h ) -> ( g ` suc k ) = ( ( 2nd o. h ) ` suc k ) ) |
| 215 |
|
fveq1 |
|- ( g = ( 2nd o. h ) -> ( g ` k ) = ( ( 2nd o. h ) ` k ) ) |
| 216 |
215
|
oveq2d |
|- ( g = ( 2nd o. h ) -> ( k F ( g ` k ) ) = ( k F ( ( 2nd o. h ) ` k ) ) ) |
| 217 |
214 216
|
eleq12d |
|- ( g = ( 2nd o. h ) -> ( ( g ` suc k ) e. ( k F ( g ` k ) ) <-> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 218 |
217
|
ralbidv |
|- ( g = ( 2nd o. h ) -> ( A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) <-> A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
| 219 |
211 213 218
|
3anbi123d |
|- ( g = ( 2nd o. h ) -> ( ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) <-> ( ( 2nd o. h ) : _om --> A /\ ( ( 2nd o. h ) ` (/) ) = C /\ A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
| 220 |
49 210 219
|
spcedv |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) |
| 221 |
220
|
ex |
|- ( C e. A -> ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
| 222 |
221
|
exlimdv |
|- ( C e. A -> ( E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
| 223 |
222
|
adantr |
|- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> ( E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
| 224 |
43 223
|
mpd |
|- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) |