Metamath Proof Explorer


Theorem ackbij2

Description: The Ackermann bijection, part 2: hereditarily finite sets can be represented by recursive binary notation. (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypotheses ackbij.f F=x𝒫ωFincardyxy×𝒫y
ackbij.g G=xVy𝒫domxFxy
ackbij.h H=recGω
Assertion ackbij2 H:R1ω1-1 ontoω

Proof

Step Hyp Ref Expression
1 ackbij.f F=x𝒫ωFincardyxy×𝒫y
2 ackbij.g G=xVy𝒫domxFxy
3 ackbij.h H=recGω
4 fveq2 a=brecGa=recGb
5 fvex recGaV
6 4 5 f1iun aωrecGa:R1a1-1ωbωrecGarecGbrecGbrecGaaωrecGa:aωR1a1-1ω
7 1 2 ackbij2lem2 aωrecGa:R1a1-1 ontocardR1a
8 f1of1 recGa:R1a1-1 ontocardR1arecGa:R1a1-1cardR1a
9 7 8 syl aωrecGa:R1a1-1cardR1a
10 ordom Ordω
11 r1fin aωR1aFin
12 ficardom R1aFincardR1aω
13 11 12 syl aωcardR1aω
14 ordelss OrdωcardR1aωcardR1aω
15 10 13 14 sylancr aωcardR1aω
16 f1ss recGa:R1a1-1cardR1acardR1aωrecGa:R1a1-1ω
17 9 15 16 syl2anc aωrecGa:R1a1-1ω
18 nnord aωOrda
19 nnord bωOrdb
20 ordtri2or2 OrdaOrdbabba
21 18 19 20 syl2an aωbωabba
22 1 2 ackbij2lem4 bωaωabrecGarecGb
23 22 ex bωaωabrecGarecGb
24 23 ancoms aωbωabrecGarecGb
25 1 2 ackbij2lem4 aωbωbarecGbrecGa
26 25 ex aωbωbarecGbrecGa
27 24 26 orim12d aωbωabbarecGarecGbrecGbrecGa
28 21 27 mpd aωbωrecGarecGbrecGbrecGa
29 28 ralrimiva aωbωrecGarecGbrecGbrecGa
30 17 29 jca aωrecGa:R1a1-1ωbωrecGarecGbrecGbrecGa
31 6 30 mprg aωrecGa:aωR1a1-1ω
32 rdgfun FunrecG
33 funiunfv FunrecGaωrecGa=recGω
34 33 eqcomd FunrecGrecGω=aωrecGa
35 f1eq1 recGω=aωrecGarecGω:R1ω1-1ωaωrecGa:R1ω1-1ω
36 32 34 35 mp2b recGω:R1ω1-1ωaωrecGa:R1ω1-1ω
37 r1funlim FunR1LimdomR1
38 37 simpli FunR1
39 funiunfv FunR1aωR1a=R1ω
40 f1eq2 aωR1a=R1ωaωrecGa:aωR1a1-1ωaωrecGa:R1ω1-1ω
41 38 39 40 mp2b aωrecGa:aωR1a1-1ωaωrecGa:R1ω1-1ω
42 36 41 bitr4i recGω:R1ω1-1ωaωrecGa:aωR1a1-1ω
43 31 42 mpbir recGω:R1ω1-1ω
44 rnuni ranrecGω=arecGωrana
45 eliun barecGωranaarecGωbrana
46 df-rex arecGωbranaaarecGωbrana
47 funfn FunrecGrecGFndomrecG
48 32 47 mpbi recGFndomrecG
49 rdgdmlim LimdomrecG
50 limomss LimdomrecGωdomrecG
51 49 50 ax-mp ωdomrecG
52 fvelimab recGFndomrecGωdomrecGarecGωcωrecGc=a
53 48 51 52 mp2an arecGωcωrecGc=a
54 1 2 ackbij2lem2 cωrecGc:R1c1-1 ontocardR1c
55 f1ofo recGc:R1c1-1 ontocardR1crecGc:R1contocardR1c
56 forn recGc:R1contocardR1cranrecGc=cardR1c
57 54 55 56 3syl cωranrecGc=cardR1c
58 r1fin cωR1cFin
59 ficardom R1cFincardR1cω
60 58 59 syl cωcardR1cω
61 ordelss OrdωcardR1cωcardR1cω
62 10 60 61 sylancr cωcardR1cω
63 57 62 eqsstrd cωranrecGcω
64 rneq recGc=aranrecGc=rana
65 64 sseq1d recGc=aranrecGcωranaω
66 63 65 syl5ibcom cωrecGc=aranaω
67 66 rexlimiv cωrecGc=aranaω
68 53 67 sylbi arecGωranaω
69 68 sselda arecGωbranabω
70 69 exlimiv aarecGωbranabω
71 peano2 bωsucbω
72 fnfvima recGFndomrecGωdomrecGsucbωrecGsucbrecGω
73 48 51 71 72 mp3an12i bωrecGsucbrecGω
74 vex bV
75 cardnn sucbωcardsucb=sucb
76 fvex R1sucbV
77 37 simpri LimdomR1
78 limomss LimdomR1ωdomR1
79 77 78 ax-mp ωdomR1
80 79 sseli sucbωsucbdomR1
81 onssr1 sucbdomR1sucbR1sucb
82 80 81 syl sucbωsucbR1sucb
83 ssdomg R1sucbVsucbR1sucbsucbR1sucb
84 76 82 83 mpsyl sucbωsucbR1sucb
85 nnon sucbωsucbOn
86 onenon sucbOnsucbdomcard
87 85 86 syl sucbωsucbdomcard
88 r1fin sucbωR1sucbFin
89 finnum R1sucbFinR1sucbdomcard
90 88 89 syl sucbωR1sucbdomcard
91 carddom2 sucbdomcardR1sucbdomcardcardsucbcardR1sucbsucbR1sucb
92 87 90 91 syl2anc sucbωcardsucbcardR1sucbsucbR1sucb
93 84 92 mpbird sucbωcardsucbcardR1sucb
94 75 93 eqsstrrd sucbωsucbcardR1sucb
95 71 94 syl bωsucbcardR1sucb
96 sucssel bVsucbcardR1sucbbcardR1sucb
97 74 95 96 mpsyl bωbcardR1sucb
98 1 2 ackbij2lem2 sucbωrecGsucb:R1sucb1-1 ontocardR1sucb
99 f1ofo recGsucb:R1sucb1-1 ontocardR1sucbrecGsucb:R1sucbontocardR1sucb
100 forn recGsucb:R1sucbontocardR1sucbranrecGsucb=cardR1sucb
101 71 98 99 100 4syl bωranrecGsucb=cardR1sucb
102 97 101 eleqtrrd bωbranrecGsucb
103 fvex recGsucbV
104 eleq1 a=recGsucbarecGωrecGsucbrecGω
105 rneq a=recGsucbrana=ranrecGsucb
106 105 eleq2d a=recGsucbbranabranrecGsucb
107 104 106 anbi12d a=recGsucbarecGωbranarecGsucbrecGωbranrecGsucb
108 103 107 spcev recGsucbrecGωbranrecGsucbaarecGωbrana
109 73 102 108 syl2anc bωaarecGωbrana
110 70 109 impbii aarecGωbranabω
111 45 46 110 3bitri barecGωranabω
112 111 eqriv arecGωrana=ω
113 44 112 eqtri ranrecGω=ω
114 dff1o5 recGω:R1ω1-1 ontoωrecGω:R1ω1-1ωranrecGω=ω
115 43 113 114 mpbir2an recGω:R1ω1-1 ontoω
116 f1oeq1 H=recGωH:R1ω1-1 ontoωrecGω:R1ω1-1 ontoω
117 3 116 ax-mp H:R1ω1-1 ontoωrecGω:R1ω1-1 ontoω
118 115 117 mpbir H:R1ω1-1 ontoω