Metamath Proof Explorer


Theorem aks4d1p6

Description: The maximal prime power exponent is smaller than the binary logarithm floor of B . (Contributed by metakunt, 30-Oct-2024)

Ref Expression
Hypotheses aks4d1p6.1 φ N 3
aks4d1p6.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p6.3 B = log 2 N 5
aks4d1p6.4 R = sup r 1 B | ¬ r A <
aks4d1p6.5 φ P
aks4d1p6.6 φ P R
aks4d1p6.7 K = P pCnt R
Assertion aks4d1p6 φ K log 2 B

Proof

Step Hyp Ref Expression
1 aks4d1p6.1 φ N 3
2 aks4d1p6.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p6.3 B = log 2 N 5
4 aks4d1p6.4 R = sup r 1 B | ¬ r A <
5 aks4d1p6.5 φ P
6 aks4d1p6.6 φ P R
7 aks4d1p6.7 K = P pCnt R
8 7 a1i φ K = P pCnt R
9 1 2 3 4 aks4d1p4 φ R 1 B ¬ R A
10 9 simpld φ R 1 B
11 elfznn R 1 B R
12 10 11 syl φ R
13 5 12 pccld φ P pCnt R 0
14 8 13 eqeltrd φ K 0
15 14 nn0zd φ K
16 15 zred φ K
17 prmnn P P
18 5 17 syl φ P
19 18 nnred φ P
20 18 nngt0d φ 0 < P
21 3 a1i φ B = log 2 N 5
22 2re 2
23 22 a1i φ 2
24 2pos 0 < 2
25 24 a1i φ 0 < 2
26 eluzelz N 3 N
27 1 26 syl φ N
28 27 zred φ N
29 0red φ 0
30 3re 3
31 30 a1i φ 3
32 3pos 0 < 3
33 32 a1i φ 0 < 3
34 eluzle N 3 3 N
35 1 34 syl φ 3 N
36 29 31 28 33 35 ltletrd φ 0 < N
37 1red φ 1
38 1lt2 1 < 2
39 38 a1i φ 1 < 2
40 37 39 ltned φ 1 2
41 40 necomd φ 2 1
42 23 25 28 36 41 relogbcld φ log 2 N
43 5nn0 5 0
44 43 a1i φ 5 0
45 42 44 reexpcld φ log 2 N 5
46 ceilcl log 2 N 5 log 2 N 5
47 45 46 syl φ log 2 N 5
48 21 47 eqeltrd φ B
49 48 zred φ B
50 9re 9
51 50 a1i φ 9
52 9pos 0 < 9
53 52 a1i φ 0 < 9
54 28 35 3lexlogpow5ineq4 φ 9 < log 2 N 5
55 29 51 45 53 54 lttrd φ 0 < log 2 N 5
56 ceilge log 2 N 5 log 2 N 5 log 2 N 5
57 45 56 syl φ log 2 N 5 log 2 N 5
58 57 21 breqtrrd φ log 2 N 5 B
59 29 45 49 55 58 ltletrd φ 0 < B
60 48 59 jca φ B 0 < B
61 elnnz B B 0 < B
62 60 61 sylibr φ B
63 62 nnred φ B
64 62 nngt0d φ 0 < B
65 2z 2
66 65 a1i φ 2
67 66 zred φ 2
68 prmuz2 P P 2
69 5 68 syl φ P 2
70 eluzle P 2 2 P
71 69 70 syl φ 2 P
72 37 67 19 39 71 ltletrd φ 1 < P
73 37 72 ltned φ 1 P
74 73 necomd φ P 1
75 19 20 63 64 74 relogbcld φ log P B
76 67 25 63 64 41 relogbcld φ log 2 B
77 18 nnrpd φ P +
78 77 rpcnd φ P
79 77 rpne0d φ P 0
80 78 79 15 cxpexpzd φ P K = P K
81 19 14 reexpcld φ P K
82 12 nnred φ R
83 8 oveq2d φ P K = P P pCnt R
84 pcdvds P R P P pCnt R R
85 5 12 84 syl2anc φ P P pCnt R R
86 18 nnzd φ P
87 zexpcl P P pCnt R 0 P P pCnt R
88 86 13 87 syl2anc φ P P pCnt R
89 dvdsle P P pCnt R R P P pCnt R R P P pCnt R R
90 88 12 89 syl2anc φ P P pCnt R R P P pCnt R R
91 85 90 mpd φ P P pCnt R R
92 83 91 eqbrtrd φ P K R
93 elfzle2 R 1 B R B
94 10 93 syl φ R B
95 81 82 63 92 94 letrd φ P K B
96 79 74 nelprd φ ¬ P 0 1
97 78 96 eldifd φ P 0 1
98 63 recnd φ B
99 29 64 ltned φ 0 B
100 99 necomd φ B 0
101 100 neneqd φ ¬ B = 0
102 elsng B B 0 B = 0
103 62 102 syl φ B 0 B = 0
104 101 103 mtbird φ ¬ B 0
105 98 104 eldifd φ B 0
106 cxplogb P 0 1 B 0 P log P B = B
107 97 105 106 syl2anc φ P log P B = B
108 95 107 breqtrrd φ P K P log P B
109 80 108 eqbrtrd φ P K P log P B
110 77 rpred φ P
111 37 67 110 39 71 ltletrd φ 1 < P
112 110 111 16 75 cxpled φ K log P B P K P log P B
113 109 112 mpbird φ K log P B
114 23 39 rplogcld φ log 2 +
115 110 111 rplogcld φ log P +
116 62 nnrpd φ B +
117 116 relogcld φ log B
118 62 nnge1d φ 1 B
119 63 118 logge0d φ 0 log B
120 2rp 2 +
121 120 a1i φ 2 +
122 121 77 logled φ 2 P log 2 log P
123 71 122 mpbid φ log 2 log P
124 114 115 117 119 123 lediv2ad φ log B log P log B log 2
125 relogbval P 2 B + log P B = log B log P
126 69 116 125 syl2anc φ log P B = log B log P
127 126 eqcomd φ log B log P = log P B
128 66 uzidd φ 2 2
129 relogbval 2 2 B + log 2 B = log B log 2
130 128 116 129 syl2anc φ log 2 B = log B log 2
131 130 eqcomd φ log B log 2 = log 2 B
132 124 127 131 3brtr3d φ log P B log 2 B
133 16 75 76 113 132 letrd φ K log 2 B
134 flge log 2 B K K log 2 B K log 2 B
135 76 15 134 syl2anc φ K log 2 B K log 2 B
136 133 135 mpbid φ K log 2 B