Metamath Proof Explorer


Theorem aks4d1p6

Description: The maximal prime power exponent is smaller than the binary logarithm floor of B . (Contributed by metakunt, 30-Oct-2024)

Ref Expression
Hypotheses aks4d1p6.1 φN3
aks4d1p6.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p6.3 B=log2N5
aks4d1p6.4 R=supr1B|¬rA<
aks4d1p6.5 φP
aks4d1p6.6 φPR
aks4d1p6.7 K=PpCntR
Assertion aks4d1p6 φKlog2B

Proof

Step Hyp Ref Expression
1 aks4d1p6.1 φN3
2 aks4d1p6.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p6.3 B=log2N5
4 aks4d1p6.4 R=supr1B|¬rA<
5 aks4d1p6.5 φP
6 aks4d1p6.6 φPR
7 aks4d1p6.7 K=PpCntR
8 7 a1i φK=PpCntR
9 1 2 3 4 aks4d1p4 φR1B¬RA
10 9 simpld φR1B
11 elfznn R1BR
12 10 11 syl φR
13 5 12 pccld φPpCntR0
14 8 13 eqeltrd φK0
15 14 nn0zd φK
16 15 zred φK
17 prmnn PP
18 5 17 syl φP
19 18 nnred φP
20 18 nngt0d φ0<P
21 3 a1i φB=log2N5
22 2re 2
23 22 a1i φ2
24 2pos 0<2
25 24 a1i φ0<2
26 eluzelz N3N
27 1 26 syl φN
28 27 zred φN
29 0red φ0
30 3re 3
31 30 a1i φ3
32 3pos 0<3
33 32 a1i φ0<3
34 eluzle N33N
35 1 34 syl φ3N
36 29 31 28 33 35 ltletrd φ0<N
37 1red φ1
38 1lt2 1<2
39 38 a1i φ1<2
40 37 39 ltned φ12
41 40 necomd φ21
42 23 25 28 36 41 relogbcld φlog2N
43 5nn0 50
44 43 a1i φ50
45 42 44 reexpcld φlog2N5
46 ceilcl log2N5log2N5
47 45 46 syl φlog2N5
48 21 47 eqeltrd φB
49 48 zred φB
50 9re 9
51 50 a1i φ9
52 9pos 0<9
53 52 a1i φ0<9
54 28 35 3lexlogpow5ineq4 φ9<log2N5
55 29 51 45 53 54 lttrd φ0<log2N5
56 ceilge log2N5log2N5log2N5
57 45 56 syl φlog2N5log2N5
58 57 21 breqtrrd φlog2N5B
59 29 45 49 55 58 ltletrd φ0<B
60 48 59 jca φB0<B
61 elnnz BB0<B
62 60 61 sylibr φB
63 62 nnred φB
64 62 nngt0d φ0<B
65 2z 2
66 65 a1i φ2
67 66 zred φ2
68 prmuz2 PP2
69 5 68 syl φP2
70 eluzle P22P
71 69 70 syl φ2P
72 37 67 19 39 71 ltletrd φ1<P
73 37 72 ltned φ1P
74 73 necomd φP1
75 19 20 63 64 74 relogbcld φlogPB
76 67 25 63 64 41 relogbcld φlog2B
77 18 nnrpd φP+
78 77 rpcnd φP
79 77 rpne0d φP0
80 78 79 15 cxpexpzd φPK=PK
81 19 14 reexpcld φPK
82 12 nnred φR
83 8 oveq2d φPK=PPpCntR
84 pcdvds PRPPpCntRR
85 5 12 84 syl2anc φPPpCntRR
86 18 nnzd φP
87 zexpcl PPpCntR0PPpCntR
88 86 13 87 syl2anc φPPpCntR
89 dvdsle PPpCntRRPPpCntRRPPpCntRR
90 88 12 89 syl2anc φPPpCntRRPPpCntRR
91 85 90 mpd φPPpCntRR
92 83 91 eqbrtrd φPKR
93 elfzle2 R1BRB
94 10 93 syl φRB
95 81 82 63 92 94 letrd φPKB
96 79 74 nelprd φ¬P01
97 78 96 eldifd φP01
98 63 recnd φB
99 29 64 ltned φ0B
100 99 necomd φB0
101 100 neneqd φ¬B=0
102 elsng BB0B=0
103 62 102 syl φB0B=0
104 101 103 mtbird φ¬B0
105 98 104 eldifd φB0
106 cxplogb P01B0PlogPB=B
107 97 105 106 syl2anc φPlogPB=B
108 95 107 breqtrrd φPKPlogPB
109 80 108 eqbrtrd φPKPlogPB
110 77 rpred φP
111 37 67 110 39 71 ltletrd φ1<P
112 110 111 16 75 cxpled φKlogPBPKPlogPB
113 109 112 mpbird φKlogPB
114 23 39 rplogcld φlog2+
115 110 111 rplogcld φlogP+
116 62 nnrpd φB+
117 116 relogcld φlogB
118 62 nnge1d φ1B
119 63 118 logge0d φ0logB
120 2rp 2+
121 120 a1i φ2+
122 121 77 logled φ2Plog2logP
123 71 122 mpbid φlog2logP
124 114 115 117 119 123 lediv2ad φlogBlogPlogBlog2
125 relogbval P2B+logPB=logBlogP
126 69 116 125 syl2anc φlogPB=logBlogP
127 126 eqcomd φlogBlogP=logPB
128 66 uzidd φ22
129 relogbval 22B+log2B=logBlog2
130 128 116 129 syl2anc φlog2B=logBlog2
131 130 eqcomd φlogBlog2=log2B
132 124 127 131 3brtr3d φlogPBlog2B
133 16 75 76 113 132 letrd φKlog2B
134 flge log2BKKlog2BKlog2B
135 76 15 134 syl2anc φKlog2BKlog2B
136 133 135 mpbid φKlog2B