Metamath Proof Explorer


Theorem aomclem8

Description: Lemma for dfac11 . Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses aomclem8.a φAOn
aomclem8.y φa𝒫R1Aaya𝒫aFin
Assertion aomclem8 φbbWeR1A

Proof

Step Hyp Ref Expression
1 aomclem8.a φAOn
2 aomclem8.y φa𝒫R1Aaya𝒫aFin
3 elequ2 h=bihib
4 elequ2 g=cigic
5 4 notbid g=c¬ig¬ic
6 3 5 bi2anan9r g=ch=bih¬igib¬ic
7 elequ2 g=cjgjc
8 elequ2 h=bjhjb
9 7 8 bi2bian9 g=ch=bjgjhjcjb
10 9 imbi2d g=ch=bjedomeijgjhjedomeijcjb
11 10 ralbidv g=ch=bjR1domejedomeijgjhjR1domejedomeijcjb
12 6 11 anbi12d g=ch=bih¬igjR1domejedomeijgjhib¬icjR1domejedomeijcjb
13 12 rexbidv g=ch=biR1domeih¬igjR1domejedomeijgjhiR1domeib¬icjR1domejedomeijcjb
14 elequ1 i=dibdb
15 elequ1 i=dicdc
16 15 notbid i=d¬ic¬dc
17 14 16 anbi12d i=dib¬icdb¬dc
18 breq2 i=djedomeijedomed
19 18 imbi1d i=djedomeijcjbjedomedjcjb
20 19 ralbidv i=djR1domejedomeijcjbjR1domejedomedjcjb
21 breq1 j=fjedomedfedomed
22 elequ1 j=fjcfc
23 elequ1 j=fjbfb
24 22 23 bibi12d j=fjcjbfcfb
25 21 24 imbi12d j=fjedomedjcjbfedomedfcfb
26 25 cbvralvw jR1domejedomedjcjbfR1domefedomedfcfb
27 20 26 bitrdi i=djR1domejedomeijcjbfR1domefedomedfcfb
28 17 27 anbi12d i=dib¬icjR1domejedomeijcjbdb¬dcfR1domefedomedfcfb
29 28 cbvrexvw iR1domeib¬icjR1domejedomeijcjbdR1domedb¬dcfR1domefedomedfcfb
30 13 29 bitrdi g=ch=biR1domeih¬igjR1domejedomeijgjhdR1domedb¬dcfR1domefedomedfcfb
31 30 cbvopabv gh|iR1domeih¬igjR1domejedomeijgjh=cb|dR1domedb¬dcfR1domefedomedfcfb
32 nfcv _csupygR1domegh|iR1domeih¬igjR1domejedomeijgjh
33 nfcv _gyc
34 nfcv _gR1dome
35 nfopab1 _ggh|iR1domeih¬igjR1domejedomeijgjh
36 33 34 35 nfsup _gsupycR1domegh|iR1domeih¬igjR1domejedomeijgjh
37 fveq2 g=cyg=yc
38 37 supeq1d g=csupygR1domegh|iR1domeih¬igjR1domejedomeijgjh=supycR1domegh|iR1domeih¬igjR1domejedomeijgjh
39 32 36 38 cbvmpt gVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjh=cVsupycR1domegh|iR1domeih¬igjR1domejedomeijgjh
40 nfcv _cgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
41 nffvmpt1 _ggVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domeranc
42 rneq g=crang=ranc
43 42 difeq2d g=cR1domerang=R1domeranc
44 43 fveq2d g=cgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang=gVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domeranc
45 40 41 44 cbvmpt gVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang=cVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domeranc
46 recseq gVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang=cVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerancrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang=recscVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domeranc
47 45 46 ax-mp recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang=recscVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domeranc
48 nfv crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h
49 nfv brecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h
50 nfmpt1 _ggVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
51 50 nfrecs _grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
52 51 nfcnv _grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1
53 nfcv _gc
54 52 53 nfima _grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1c
55 54 nfint _grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1c
56 nfcv _gb
57 52 56 nfima _grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
58 57 nfint _grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
59 55 58 nfel grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
60 nfcv _hV
61 nfcv _hyg
62 nfcv _hR1dome
63 nfopab2 _hgh|iR1domeih¬igjR1domejedomeijgjh
64 61 62 63 nfsup _hsupygR1domegh|iR1domeih¬igjR1domejedomeijgjh
65 60 64 nfmpt _hgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjh
66 nfcv _hR1domerang
67 65 66 nffv _hgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
68 60 67 nfmpt _hgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
69 68 nfrecs _hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
70 69 nfcnv _hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1
71 nfcv _hc
72 70 71 nfima _hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1c
73 72 nfint _hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1c
74 nfcv _hb
75 70 74 nfima _hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
76 75 nfint _hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
77 73 76 nfel hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
78 sneq g=cg=c
79 78 imaeq2d g=crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1g=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1c
80 79 inteqd g=crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1g=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1c
81 sneq h=bh=b
82 81 imaeq2d h=brecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
83 82 inteqd h=brecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
84 eleq12 recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1g=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1brecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
85 80 83 84 syl2an g=ch=brecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
86 48 49 59 77 85 cbvopab gh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h=cb|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1crecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1b
87 fveq2 g=crankg=rankc
88 fveq2 h=brankh=rankb
89 87 88 breqan12d g=ch=brankgErankhrankcErankb
90 87 88 eqeqan12d g=ch=brankg=rankhrankc=rankb
91 simpl g=ch=bg=c
92 suceq rankg=rankcsucrankg=sucrankc
93 87 92 syl g=csucrankg=sucrankc
94 93 adantr g=ch=bsucrankg=sucrankc
95 94 fveq2d g=ch=besucrankg=esucrankc
96 simpr g=ch=bh=b
97 91 95 96 breq123d g=ch=bgesucrankghcesucrankcb
98 90 97 anbi12d g=ch=brankg=rankhgesucrankghrankc=rankbcesucrankcb
99 89 98 orbi12d g=ch=brankgErankhrankg=rankhgesucrankghrankcErankbrankc=rankbcesucrankcb
100 99 cbvopabv gh|rankgErankhrankg=rankhgesucrankgh=cb|rankcErankbrankc=rankbcesucrankcb
101 eqid ifdome=domegh|rankgErankhrankg=rankhgesucrankghgh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hR1dome×R1dome=ifdome=domegh|rankgErankhrankg=rankhgesucrankghgh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hR1dome×R1dome
102 dmeq l=edoml=dome
103 102 unieqd l=edoml=dome
104 102 103 eqeq12d l=edoml=domldome=dome
105 fveq1 l=elsucrankg=esucrankg
106 105 breqd l=eglsucrankghgesucrankgh
107 106 anbi2d l=erankg=rankhglsucrankghrankg=rankhgesucrankgh
108 107 orbi2d l=erankgErankhrankg=rankhglsucrankghrankgErankhrankg=rankhgesucrankgh
109 108 opabbidv l=egh|rankgErankhrankg=rankhglsucrankgh=gh|rankgErankhrankg=rankhgesucrankgh
110 eqidd l=eyg=yg
111 102 fveq2d l=eR1doml=R1dome
112 103 fveq2d l=eR1doml=R1dome
113 id l=el=e
114 113 103 fveq12d l=eldoml=edome
115 114 breqd l=ejldomlijedomei
116 115 imbi1d l=ejldomlijgjhjedomeijgjh
117 112 116 raleqbidv l=ejR1domljldomlijgjhjR1domejedomeijgjh
118 117 anbi2d l=eih¬igjR1domljldomlijgjhih¬igjR1domejedomeijgjh
119 112 118 rexeqbidv l=eiR1domlih¬igjR1domljldomlijgjhiR1domeih¬igjR1domejedomeijgjh
120 119 opabbidv l=egh|iR1domlih¬igjR1domljldomlijgjh=gh|iR1domeih¬igjR1domejedomeijgjh
121 110 111 120 supeq123d l=esupygR1domlgh|iR1domlih¬igjR1domljldomlijgjh=supygR1domegh|iR1domeih¬igjR1domejedomeijgjh
122 121 mpteq2dv l=egVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjh=gVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjh
123 111 difeq1d l=eR1domlrang=R1domerang
124 122 123 fveq12d l=egVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang=gVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
125 124 mpteq2dv l=egVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang=gVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
126 recseq gVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang=gVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerangrecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
127 125 126 syl l=erecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang
128 127 cnveqd l=erecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1
129 128 imaeq1d l=erecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1g=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1g
130 129 inteqd l=erecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1g=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1g
131 128 imaeq1d l=erecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1h=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h
132 131 inteqd l=erecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1h=recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h
133 130 132 eleq12d l=erecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1grecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1hrecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h
134 133 opabbidv l=egh|recsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1grecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1h=gh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h
135 104 109 134 ifbieq12d l=eifdoml=domlgh|rankgErankhrankg=rankhglsucrankghgh|recsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1grecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1h=ifdome=domegh|rankgErankhrankg=rankhgesucrankghgh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1h
136 111 sqxpeqd l=eR1doml×R1doml=R1dome×R1dome
137 135 136 ineq12d l=eifdoml=domlgh|rankgErankhrankg=rankhglsucrankghgh|recsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1grecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1hR1doml×R1doml=ifdome=domegh|rankgErankhrankg=rankhgesucrankghgh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hR1dome×R1dome
138 137 cbvmptv lVifdoml=domlgh|rankgErankhrankg=rankhglsucrankghgh|recsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1grecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1hR1doml×R1doml=eVifdome=domegh|rankgErankhrankg=rankhgesucrankghgh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hR1dome×R1dome
139 recseq lVifdoml=domlgh|rankgErankhrankg=rankhglsucrankghgh|recsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1grecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1hR1doml×R1doml=eVifdome=domegh|rankgErankhrankg=rankhgesucrankghgh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hR1dome×R1domerecslVifdoml=domlgh|rankgErankhrankg=rankhglsucrankghgh|recsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1grecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1hR1doml×R1doml=recseVifdome=domegh|rankgErankhrankg=rankhgesucrankghgh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hR1dome×R1dome
140 138 139 ax-mp recslVifdoml=domlgh|rankgErankhrankg=rankhglsucrankghgh|recsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1grecsgVgVsupygR1domlgh|iR1domlih¬igjR1domljldomlijgjhR1domlrang-1hR1doml×R1doml=recseVifdome=domegh|rankgErankhrankg=rankhgesucrankghgh|recsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1grecsgVgVsupygR1domegh|iR1domeih¬igjR1domejedomeijgjhR1domerang-1hR1dome×R1dome
141 neeq1 a=cac
142 fveq2 a=cya=yc
143 pweq a=c𝒫a=𝒫c
144 143 ineq1d a=c𝒫aFin=𝒫cFin
145 144 difeq1d a=c𝒫aFin=𝒫cFin
146 142 145 eleq12d a=cya𝒫aFinyc𝒫cFin
147 141 146 imbi12d a=caya𝒫aFincyc𝒫cFin
148 147 cbvralvw a𝒫R1Aaya𝒫aFinc𝒫R1Acyc𝒫cFin
149 2 148 sylib φc𝒫R1Acyc𝒫cFin
150 31 39 47 86 100 101 140 1 149 aomclem7 φbbWeR1A