Metamath Proof Explorer


Theorem arearect

Description: The area of a rectangle whose sides are parallel to the coordinate axes in ( RR X. RR ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019)

Ref Expression
Hypotheses arearect.1 A
arearect.2 B
arearect.3 C
arearect.4 D
arearect.5 AB
arearect.6 CD
arearect.7 S=AB×CD
Assertion arearect areaS=BADC

Proof

Step Hyp Ref Expression
1 arearect.1 A
2 arearect.2 B
3 arearect.3 C
4 arearect.4 D
5 arearect.5 AB
6 arearect.6 CD
7 arearect.7 S=AB×CD
8 iccssre ABAB
9 1 2 8 mp2an AB
10 iccssre CDCD
11 3 4 10 mp2an CD
12 xpss12 ABCDAB×CD2
13 9 11 12 mp2an AB×CD2
14 7 13 eqsstri S2
15 iftrue xABifxABDC0=DC
16 7 imaeq1i Sx=AB×CDx
17 iftrue xABifxABCD=CD
18 xpimasn xABAB×CDx=CD
19 17 18 eqtr4d xABifxABCD=AB×CDx
20 iffalse ¬xABifxABCD=
21 disjsn ABx=¬xAB
22 xpima1 ABx=AB×CDx=
23 21 22 sylbir ¬xABAB×CDx=
24 20 23 eqtr4d ¬xABifxABCD=AB×CDx
25 19 24 pm2.61i ifxABCD=AB×CDx
26 16 25 eqtr4i Sx=ifxABCD
27 26 fveq2i volSx=volifxABCD
28 17 fveq2d xABvolifxABCD=volCD
29 27 28 eqtrid xABvolSx=volCD
30 iccmbl CDCDdomvol
31 3 4 30 mp2an CDdomvol
32 mblvol CDdomvolvolCD=vol*CD
33 31 32 ax-mp volCD=vol*CD
34 ovolicc CDCDvol*CD=DC
35 3 4 6 34 mp3an vol*CD=DC
36 33 35 eqtri volCD=DC
37 29 36 eqtrdi xABvolSx=DC
38 15 37 eqtr4d xABifxABDC0=volSx
39 iffalse ¬xABifxABDC0=0
40 20 fveq2d ¬xABvolifxABCD=vol
41 27 40 eqtrid ¬xABvolSx=vol
42 0mbl domvol
43 mblvol domvolvol=vol*
44 42 43 ax-mp vol=vol*
45 ovol0 vol*=0
46 44 45 eqtri vol=0
47 41 46 eqtrdi ¬xABvolSx=0
48 39 47 eqtr4d ¬xABifxABDC0=volSx
49 38 48 pm2.61i ifxABDC0=volSx
50 49 eqcomi volSx=ifxABDC0
51 50 a1i xvolSx=ifxABDC0
52 4 3 resubcli DC
53 0re 0
54 52 53 ifcli ifxABDC0
55 51 54 eqeltrdi xvolSx
56 volf vol:domvol0+∞
57 ffun vol:domvol0+∞Funvol
58 56 57 ax-mp Funvol
59 31 42 ifcli ifxABCDdomvol
60 26 59 eqeltri Sxdomvol
61 fvimacnv FunvolSxdomvolvolSxSxvol-1
62 58 60 61 mp2an volSxSxvol-1
63 55 62 sylib xSxvol-1
64 63 rgen xSxvol-1
65 9 a1i 0AB
66 rembl domvol
67 66 a1i 0domvol
68 37 52 eqeltrdi xABvolSx
69 68 adantl 0xABvolSx
70 eldifn xAB¬xAB
71 70 47 syl xABvolSx=0
72 71 adantl 0xABvolSx=0
73 37 mpteq2ia xABvolSx=xABDC
74 52 recni DC
75 ax-resscn
76 9 75 sstri AB
77 ssid
78 cncfmptc DCABxABDC:ABcn
79 74 76 77 78 mp3an xABDC:ABcn
80 cniccibl ABxABDC:ABcnxABDC𝐿1
81 1 2 79 80 mp3an xABDC𝐿1
82 73 81 eqeltri xABvolSx𝐿1
83 82 a1i 0xABvolSx𝐿1
84 65 67 69 72 83 iblss2 0xvolSx𝐿1
85 53 84 ax-mp xvolSx𝐿1
86 dmarea SdomareaS2xSxvol-1xvolSx𝐿1
87 14 64 85 86 mpbir3an Sdomarea
88 areaval SdomareaareaS=volSxdx
89 87 88 ax-mp areaS=volSxdx
90 itgeq2 xvolSx=ifxABDC0volSxdx=ifxABDC0dx
91 90 51 mprg volSxdx=ifxABDC0dx
92 iccmbl ABABdomvol
93 1 2 92 mp2an ABdomvol
94 mblvol ABdomvolvolAB=vol*AB
95 93 94 ax-mp volAB=vol*AB
96 ovolicc ABABvol*AB=BA
97 1 2 5 96 mp3an vol*AB=BA
98 95 97 eqtri volAB=BA
99 2 1 resubcli BA
100 98 99 eqeltri volAB
101 itgconst ABdomvolvolABDCABDCdx=DCvolAB
102 93 100 74 101 mp3an ABDCdx=DCvolAB
103 itgss2 ABABDCdx=ifxABDC0dx
104 9 103 ax-mp ABDCdx=ifxABDC0dx
105 98 oveq2i DCvolAB=DCBA
106 102 104 105 3eqtr3i ifxABDC0dx=DCBA
107 91 106 eqtri volSxdx=DCBA
108 99 recni BA
109 74 108 mulcomi DCBA=BADC
110 89 107 109 3eqtri areaS=BADC