| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bfp.2 |
|
| 2 |
|
bfp.3 |
|
| 3 |
|
bfp.4 |
|
| 4 |
|
bfp.5 |
|
| 5 |
|
bfp.6 |
|
| 6 |
|
bfp.7 |
|
| 7 |
|
bfp.8 |
|
| 8 |
|
bfp.9 |
|
| 9 |
|
bfp.10 |
|
| 10 |
|
cmetmet |
|
| 11 |
1 10
|
syl |
|
| 12 |
|
nnuz |
|
| 13 |
|
1zzd |
|
| 14 |
12 9 13 8 5
|
algrf |
|
| 15 |
5 8
|
ffvelcdmd |
|
| 16 |
|
metcl |
|
| 17 |
11 8 15 16
|
syl3anc |
|
| 18 |
17 3
|
rerpdivcld |
|
| 19 |
|
fveq2 |
|
| 20 |
|
fvoveq1 |
|
| 21 |
19 20
|
oveq12d |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
oveq2d |
|
| 24 |
21 23
|
breq12d |
|
| 25 |
24
|
imbi2d |
|
| 26 |
|
fveq2 |
|
| 27 |
|
fvoveq1 |
|
| 28 |
26 27
|
oveq12d |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
28 30
|
breq12d |
|
| 32 |
31
|
imbi2d |
|
| 33 |
|
fveq2 |
|
| 34 |
|
fvoveq1 |
|
| 35 |
33 34
|
oveq12d |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
oveq2d |
|
| 38 |
35 37
|
breq12d |
|
| 39 |
38
|
imbi2d |
|
| 40 |
17
|
leidd |
|
| 41 |
12 9 13 8
|
algr0 |
|
| 42 |
|
1nn |
|
| 43 |
12 9 13 8 5
|
algrp1 |
|
| 44 |
42 43
|
mpan2 |
|
| 45 |
41
|
fveq2d |
|
| 46 |
44 45
|
eqtrd |
|
| 47 |
41 46
|
oveq12d |
|
| 48 |
3
|
rpred |
|
| 49 |
48
|
recnd |
|
| 50 |
49
|
exp1d |
|
| 51 |
50
|
oveq2d |
|
| 52 |
17
|
recnd |
|
| 53 |
3
|
rpne0d |
|
| 54 |
52 49 53
|
divcan1d |
|
| 55 |
51 54
|
eqtrd |
|
| 56 |
40 47 55
|
3brtr4d |
|
| 57 |
14
|
ffvelcdmda |
|
| 58 |
|
peano2nn |
|
| 59 |
|
ffvelcdm |
|
| 60 |
14 58 59
|
syl2an |
|
| 61 |
57 60
|
jca |
|
| 62 |
6
|
ralrimivva |
|
| 63 |
62
|
adantr |
|
| 64 |
|
fveq2 |
|
| 65 |
64
|
oveq1d |
|
| 66 |
|
oveq1 |
|
| 67 |
66
|
oveq2d |
|
| 68 |
65 67
|
breq12d |
|
| 69 |
|
fveq2 |
|
| 70 |
69
|
oveq2d |
|
| 71 |
|
oveq2 |
|
| 72 |
71
|
oveq2d |
|
| 73 |
70 72
|
breq12d |
|
| 74 |
68 73
|
rspc2v |
|
| 75 |
61 63 74
|
sylc |
|
| 76 |
11
|
adantr |
|
| 77 |
5
|
adantr |
|
| 78 |
77 57
|
ffvelcdmd |
|
| 79 |
77 60
|
ffvelcdmd |
|
| 80 |
|
metcl |
|
| 81 |
76 78 79 80
|
syl3anc |
|
| 82 |
48
|
adantr |
|
| 83 |
|
metcl |
|
| 84 |
76 57 60 83
|
syl3anc |
|
| 85 |
82 84
|
remulcld |
|
| 86 |
18
|
adantr |
|
| 87 |
58
|
adantl |
|
| 88 |
87
|
nnnn0d |
|
| 89 |
82 88
|
reexpcld |
|
| 90 |
86 89
|
remulcld |
|
| 91 |
|
letr |
|
| 92 |
81 85 90 91
|
syl3anc |
|
| 93 |
75 92
|
mpand |
|
| 94 |
|
nnnn0 |
|
| 95 |
|
reexpcl |
|
| 96 |
48 94 95
|
syl2an |
|
| 97 |
86 96
|
remulcld |
|
| 98 |
3
|
rpgt0d |
|
| 99 |
98
|
adantr |
|
| 100 |
|
lemul1 |
|
| 101 |
84 97 82 99 100
|
syl112anc |
|
| 102 |
84
|
recnd |
|
| 103 |
49
|
adantr |
|
| 104 |
102 103
|
mulcomd |
|
| 105 |
86
|
recnd |
|
| 106 |
96
|
recnd |
|
| 107 |
105 106 103
|
mulassd |
|
| 108 |
|
expp1 |
|
| 109 |
49 94 108
|
syl2an |
|
| 110 |
109
|
oveq2d |
|
| 111 |
107 110
|
eqtr4d |
|
| 112 |
104 111
|
breq12d |
|
| 113 |
101 112
|
bitrd |
|
| 114 |
12 9 13 8 5
|
algrp1 |
|
| 115 |
12 9 13 8 5
|
algrp1 |
|
| 116 |
58 115
|
sylan2 |
|
| 117 |
114 116
|
oveq12d |
|
| 118 |
117
|
breq1d |
|
| 119 |
93 113 118
|
3imtr4d |
|
| 120 |
119
|
expcom |
|
| 121 |
120
|
a2d |
|
| 122 |
25 32 39 32 56 121
|
nnind |
|
| 123 |
122
|
impcom |
|
| 124 |
11 14 18 3 4 123
|
geomcau |
|
| 125 |
7
|
cmetcau |
|
| 126 |
1 124 125
|
syl2anc |
|
| 127 |
|
metxmet |
|
| 128 |
7
|
methaus |
|
| 129 |
11 127 128
|
3syl |
|
| 130 |
|
lmfun |
|
| 131 |
|
funfvbrb |
|
| 132 |
129 130 131
|
3syl |
|
| 133 |
126 132
|
mpbid |
|