Step |
Hyp |
Ref |
Expression |
1 |
|
bfp.2 |
|
2 |
|
bfp.3 |
|
3 |
|
bfp.4 |
|
4 |
|
bfp.5 |
|
5 |
|
bfp.6 |
|
6 |
|
bfp.7 |
|
7 |
|
bfp.8 |
|
8 |
|
bfp.9 |
|
9 |
|
bfp.10 |
|
10 |
|
cmetmet |
|
11 |
1 10
|
syl |
|
12 |
|
nnuz |
|
13 |
|
1zzd |
|
14 |
12 9 13 8 5
|
algrf |
|
15 |
5 8
|
ffvelrnd |
|
16 |
|
metcl |
|
17 |
11 8 15 16
|
syl3anc |
|
18 |
17 3
|
rerpdivcld |
|
19 |
|
fveq2 |
|
20 |
|
fvoveq1 |
|
21 |
19 20
|
oveq12d |
|
22 |
|
oveq2 |
|
23 |
22
|
oveq2d |
|
24 |
21 23
|
breq12d |
|
25 |
24
|
imbi2d |
|
26 |
|
fveq2 |
|
27 |
|
fvoveq1 |
|
28 |
26 27
|
oveq12d |
|
29 |
|
oveq2 |
|
30 |
29
|
oveq2d |
|
31 |
28 30
|
breq12d |
|
32 |
31
|
imbi2d |
|
33 |
|
fveq2 |
|
34 |
|
fvoveq1 |
|
35 |
33 34
|
oveq12d |
|
36 |
|
oveq2 |
|
37 |
36
|
oveq2d |
|
38 |
35 37
|
breq12d |
|
39 |
38
|
imbi2d |
|
40 |
17
|
leidd |
|
41 |
12 9 13 8
|
algr0 |
|
42 |
|
1nn |
|
43 |
12 9 13 8 5
|
algrp1 |
|
44 |
42 43
|
mpan2 |
|
45 |
41
|
fveq2d |
|
46 |
44 45
|
eqtrd |
|
47 |
41 46
|
oveq12d |
|
48 |
3
|
rpred |
|
49 |
48
|
recnd |
|
50 |
49
|
exp1d |
|
51 |
50
|
oveq2d |
|
52 |
17
|
recnd |
|
53 |
3
|
rpne0d |
|
54 |
52 49 53
|
divcan1d |
|
55 |
51 54
|
eqtrd |
|
56 |
40 47 55
|
3brtr4d |
|
57 |
14
|
ffvelrnda |
|
58 |
|
peano2nn |
|
59 |
|
ffvelrn |
|
60 |
14 58 59
|
syl2an |
|
61 |
57 60
|
jca |
|
62 |
6
|
ralrimivva |
|
63 |
62
|
adantr |
|
64 |
|
fveq2 |
|
65 |
64
|
oveq1d |
|
66 |
|
oveq1 |
|
67 |
66
|
oveq2d |
|
68 |
65 67
|
breq12d |
|
69 |
|
fveq2 |
|
70 |
69
|
oveq2d |
|
71 |
|
oveq2 |
|
72 |
71
|
oveq2d |
|
73 |
70 72
|
breq12d |
|
74 |
68 73
|
rspc2v |
|
75 |
61 63 74
|
sylc |
|
76 |
11
|
adantr |
|
77 |
5
|
adantr |
|
78 |
77 57
|
ffvelrnd |
|
79 |
77 60
|
ffvelrnd |
|
80 |
|
metcl |
|
81 |
76 78 79 80
|
syl3anc |
|
82 |
48
|
adantr |
|
83 |
|
metcl |
|
84 |
76 57 60 83
|
syl3anc |
|
85 |
82 84
|
remulcld |
|
86 |
18
|
adantr |
|
87 |
58
|
adantl |
|
88 |
87
|
nnnn0d |
|
89 |
82 88
|
reexpcld |
|
90 |
86 89
|
remulcld |
|
91 |
|
letr |
|
92 |
81 85 90 91
|
syl3anc |
|
93 |
75 92
|
mpand |
|
94 |
|
nnnn0 |
|
95 |
|
reexpcl |
|
96 |
48 94 95
|
syl2an |
|
97 |
86 96
|
remulcld |
|
98 |
3
|
rpgt0d |
|
99 |
98
|
adantr |
|
100 |
|
lemul1 |
|
101 |
84 97 82 99 100
|
syl112anc |
|
102 |
84
|
recnd |
|
103 |
49
|
adantr |
|
104 |
102 103
|
mulcomd |
|
105 |
86
|
recnd |
|
106 |
96
|
recnd |
|
107 |
105 106 103
|
mulassd |
|
108 |
|
expp1 |
|
109 |
49 94 108
|
syl2an |
|
110 |
109
|
oveq2d |
|
111 |
107 110
|
eqtr4d |
|
112 |
104 111
|
breq12d |
|
113 |
101 112
|
bitrd |
|
114 |
12 9 13 8 5
|
algrp1 |
|
115 |
12 9 13 8 5
|
algrp1 |
|
116 |
58 115
|
sylan2 |
|
117 |
114 116
|
oveq12d |
|
118 |
117
|
breq1d |
|
119 |
93 113 118
|
3imtr4d |
|
120 |
119
|
expcom |
|
121 |
120
|
a2d |
|
122 |
25 32 39 32 56 121
|
nnind |
|
123 |
122
|
impcom |
|
124 |
11 14 18 3 4 123
|
geomcau |
|
125 |
7
|
cmetcau |
|
126 |
1 124 125
|
syl2anc |
|
127 |
|
metxmet |
|
128 |
7
|
methaus |
|
129 |
11 127 128
|
3syl |
|
130 |
|
lmfun |
|
131 |
|
funfvbrb |
|
132 |
129 130 131
|
3syl |
|
133 |
126 132
|
mpbid |
|