Metamath Proof Explorer


Theorem bfplem1

Description: Lemma for bfp . The sequence G , which simply starts from any point in the space and iterates F , satisfies the property that the distance from G ( n ) to G ( n + 1 ) decreases by at least K after each step. Thus, the total distance from any G ( i ) to G ( j ) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ( ( ~>tJ )G ) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014)

Ref Expression
Hypotheses bfp.2 φDCMetX
bfp.3 φX
bfp.4 φK+
bfp.5 φK<1
bfp.6 φF:XX
bfp.7 φxXyXFxDFyKxDy
bfp.8 J=MetOpenD
bfp.9 φAX
bfp.10 G=seq1F1st×A
Assertion bfplem1 φGtJtJG

Proof

Step Hyp Ref Expression
1 bfp.2 φDCMetX
2 bfp.3 φX
3 bfp.4 φK+
4 bfp.5 φK<1
5 bfp.6 φF:XX
6 bfp.7 φxXyXFxDFyKxDy
7 bfp.8 J=MetOpenD
8 bfp.9 φAX
9 bfp.10 G=seq1F1st×A
10 cmetmet DCMetXDMetX
11 1 10 syl φDMetX
12 nnuz =1
13 1zzd φ1
14 12 9 13 8 5 algrf φG:X
15 5 8 ffvelcdmd φFAX
16 metcl DMetXAXFAXADFA
17 11 8 15 16 syl3anc φADFA
18 17 3 rerpdivcld φADFAK
19 fveq2 j=1Gj=G1
20 fvoveq1 j=1Gj+1=G1+1
21 19 20 oveq12d j=1GjDGj+1=G1DG1+1
22 oveq2 j=1Kj=K1
23 22 oveq2d j=1ADFAKKj=ADFAKK1
24 21 23 breq12d j=1GjDGj+1ADFAKKjG1DG1+1ADFAKK1
25 24 imbi2d j=1φGjDGj+1ADFAKKjφG1DG1+1ADFAKK1
26 fveq2 j=kGj=Gk
27 fvoveq1 j=kGj+1=Gk+1
28 26 27 oveq12d j=kGjDGj+1=GkDGk+1
29 oveq2 j=kKj=Kk
30 29 oveq2d j=kADFAKKj=ADFAKKk
31 28 30 breq12d j=kGjDGj+1ADFAKKjGkDGk+1ADFAKKk
32 31 imbi2d j=kφGjDGj+1ADFAKKjφGkDGk+1ADFAKKk
33 fveq2 j=k+1Gj=Gk+1
34 fvoveq1 j=k+1Gj+1=Gk+1+1
35 33 34 oveq12d j=k+1GjDGj+1=Gk+1DGk+1+1
36 oveq2 j=k+1Kj=Kk+1
37 36 oveq2d j=k+1ADFAKKj=ADFAKKk+1
38 35 37 breq12d j=k+1GjDGj+1ADFAKKjGk+1DGk+1+1ADFAKKk+1
39 38 imbi2d j=k+1φGjDGj+1ADFAKKjφGk+1DGk+1+1ADFAKKk+1
40 17 leidd φADFAADFA
41 12 9 13 8 algr0 φG1=A
42 1nn 1
43 12 9 13 8 5 algrp1 φ1G1+1=FG1
44 42 43 mpan2 φG1+1=FG1
45 41 fveq2d φFG1=FA
46 44 45 eqtrd φG1+1=FA
47 41 46 oveq12d φG1DG1+1=ADFA
48 3 rpred φK
49 48 recnd φK
50 49 exp1d φK1=K
51 50 oveq2d φADFAKK1=ADFAKK
52 17 recnd φADFA
53 3 rpne0d φK0
54 52 49 53 divcan1d φADFAKK=ADFA
55 51 54 eqtrd φADFAKK1=ADFA
56 40 47 55 3brtr4d φG1DG1+1ADFAKK1
57 14 ffvelcdmda φkGkX
58 peano2nn kk+1
59 ffvelcdm G:Xk+1Gk+1X
60 14 58 59 syl2an φkGk+1X
61 57 60 jca φkGkXGk+1X
62 6 ralrimivva φxXyXFxDFyKxDy
63 62 adantr φkxXyXFxDFyKxDy
64 fveq2 x=GkFx=FGk
65 64 oveq1d x=GkFxDFy=FGkDFy
66 oveq1 x=GkxDy=GkDy
67 66 oveq2d x=GkKxDy=KGkDy
68 65 67 breq12d x=GkFxDFyKxDyFGkDFyKGkDy
69 fveq2 y=Gk+1Fy=FGk+1
70 69 oveq2d y=Gk+1FGkDFy=FGkDFGk+1
71 oveq2 y=Gk+1GkDy=GkDGk+1
72 71 oveq2d y=Gk+1KGkDy=KGkDGk+1
73 70 72 breq12d y=Gk+1FGkDFyKGkDyFGkDFGk+1KGkDGk+1
74 68 73 rspc2v GkXGk+1XxXyXFxDFyKxDyFGkDFGk+1KGkDGk+1
75 61 63 74 sylc φkFGkDFGk+1KGkDGk+1
76 11 adantr φkDMetX
77 5 adantr φkF:XX
78 77 57 ffvelcdmd φkFGkX
79 77 60 ffvelcdmd φkFGk+1X
80 metcl DMetXFGkXFGk+1XFGkDFGk+1
81 76 78 79 80 syl3anc φkFGkDFGk+1
82 48 adantr φkK
83 metcl DMetXGkXGk+1XGkDGk+1
84 76 57 60 83 syl3anc φkGkDGk+1
85 82 84 remulcld φkKGkDGk+1
86 18 adantr φkADFAK
87 58 adantl φkk+1
88 87 nnnn0d φkk+10
89 82 88 reexpcld φkKk+1
90 86 89 remulcld φkADFAKKk+1
91 letr FGkDFGk+1KGkDGk+1ADFAKKk+1FGkDFGk+1KGkDGk+1KGkDGk+1ADFAKKk+1FGkDFGk+1ADFAKKk+1
92 81 85 90 91 syl3anc φkFGkDFGk+1KGkDGk+1KGkDGk+1ADFAKKk+1FGkDFGk+1ADFAKKk+1
93 75 92 mpand φkKGkDGk+1ADFAKKk+1FGkDFGk+1ADFAKKk+1
94 nnnn0 kk0
95 reexpcl Kk0Kk
96 48 94 95 syl2an φkKk
97 86 96 remulcld φkADFAKKk
98 3 rpgt0d φ0<K
99 98 adantr φk0<K
100 lemul1 GkDGk+1ADFAKKkK0<KGkDGk+1ADFAKKkGkDGk+1KADFAKKkK
101 84 97 82 99 100 syl112anc φkGkDGk+1ADFAKKkGkDGk+1KADFAKKkK
102 84 recnd φkGkDGk+1
103 49 adantr φkK
104 102 103 mulcomd φkGkDGk+1K=KGkDGk+1
105 86 recnd φkADFAK
106 96 recnd φkKk
107 105 106 103 mulassd φkADFAKKkK=ADFAKKkK
108 expp1 Kk0Kk+1=KkK
109 49 94 108 syl2an φkKk+1=KkK
110 109 oveq2d φkADFAKKk+1=ADFAKKkK
111 107 110 eqtr4d φkADFAKKkK=ADFAKKk+1
112 104 111 breq12d φkGkDGk+1KADFAKKkKKGkDGk+1ADFAKKk+1
113 101 112 bitrd φkGkDGk+1ADFAKKkKGkDGk+1ADFAKKk+1
114 12 9 13 8 5 algrp1 φkGk+1=FGk
115 12 9 13 8 5 algrp1 φk+1Gk+1+1=FGk+1
116 58 115 sylan2 φkGk+1+1=FGk+1
117 114 116 oveq12d φkGk+1DGk+1+1=FGkDFGk+1
118 117 breq1d φkGk+1DGk+1+1ADFAKKk+1FGkDFGk+1ADFAKKk+1
119 93 113 118 3imtr4d φkGkDGk+1ADFAKKkGk+1DGk+1+1ADFAKKk+1
120 119 expcom kφGkDGk+1ADFAKKkGk+1DGk+1+1ADFAKKk+1
121 120 a2d kφGkDGk+1ADFAKKkφGk+1DGk+1+1ADFAKKk+1
122 25 32 39 32 56 121 nnind kφGkDGk+1ADFAKKk
123 122 impcom φkGkDGk+1ADFAKKk
124 11 14 18 3 4 123 geomcau φGCauD
125 7 cmetcau DCMetXGCauDGdomtJ
126 1 124 125 syl2anc φGdomtJ
127 metxmet DMetXD∞MetX
128 7 methaus D∞MetXJHaus
129 11 127 128 3syl φJHaus
130 lmfun JHausFuntJ
131 funfvbrb FuntJGdomtJGtJtJG
132 129 130 131 3syl φGdomtJGtJtJG
133 126 132 mpbid φGtJtJG