Metamath Proof Explorer


Theorem bfplem1

Description: Lemma for bfp . The sequence G , which simply starts from any point in the space and iterates F , satisfies the property that the distance from G ( n ) to G ( n + 1 ) decreases by at least K after each step. Thus, the total distance from any G ( i ) to G ( j ) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ( ( ~>tJ )G ) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014)

Ref Expression
Hypotheses bfp.2 φ D CMet X
bfp.3 φ X
bfp.4 φ K +
bfp.5 φ K < 1
bfp.6 φ F : X X
bfp.7 φ x X y X F x D F y K x D y
bfp.8 J = MetOpen D
bfp.9 φ A X
bfp.10 G = seq 1 F 1 st × A
Assertion bfplem1 φ G t J t J G

Proof

Step Hyp Ref Expression
1 bfp.2 φ D CMet X
2 bfp.3 φ X
3 bfp.4 φ K +
4 bfp.5 φ K < 1
5 bfp.6 φ F : X X
6 bfp.7 φ x X y X F x D F y K x D y
7 bfp.8 J = MetOpen D
8 bfp.9 φ A X
9 bfp.10 G = seq 1 F 1 st × A
10 cmetmet D CMet X D Met X
11 1 10 syl φ D Met X
12 nnuz = 1
13 1zzd φ 1
14 12 9 13 8 5 algrf φ G : X
15 5 8 ffvelrnd φ F A X
16 metcl D Met X A X F A X A D F A
17 11 8 15 16 syl3anc φ A D F A
18 17 3 rerpdivcld φ A D F A K
19 fveq2 j = 1 G j = G 1
20 fvoveq1 j = 1 G j + 1 = G 1 + 1
21 19 20 oveq12d j = 1 G j D G j + 1 = G 1 D G 1 + 1
22 oveq2 j = 1 K j = K 1
23 22 oveq2d j = 1 A D F A K K j = A D F A K K 1
24 21 23 breq12d j = 1 G j D G j + 1 A D F A K K j G 1 D G 1 + 1 A D F A K K 1
25 24 imbi2d j = 1 φ G j D G j + 1 A D F A K K j φ G 1 D G 1 + 1 A D F A K K 1
26 fveq2 j = k G j = G k
27 fvoveq1 j = k G j + 1 = G k + 1
28 26 27 oveq12d j = k G j D G j + 1 = G k D G k + 1
29 oveq2 j = k K j = K k
30 29 oveq2d j = k A D F A K K j = A D F A K K k
31 28 30 breq12d j = k G j D G j + 1 A D F A K K j G k D G k + 1 A D F A K K k
32 31 imbi2d j = k φ G j D G j + 1 A D F A K K j φ G k D G k + 1 A D F A K K k
33 fveq2 j = k + 1 G j = G k + 1
34 fvoveq1 j = k + 1 G j + 1 = G k + 1 + 1
35 33 34 oveq12d j = k + 1 G j D G j + 1 = G k + 1 D G k + 1 + 1
36 oveq2 j = k + 1 K j = K k + 1
37 36 oveq2d j = k + 1 A D F A K K j = A D F A K K k + 1
38 35 37 breq12d j = k + 1 G j D G j + 1 A D F A K K j G k + 1 D G k + 1 + 1 A D F A K K k + 1
39 38 imbi2d j = k + 1 φ G j D G j + 1 A D F A K K j φ G k + 1 D G k + 1 + 1 A D F A K K k + 1
40 17 leidd φ A D F A A D F A
41 12 9 13 8 algr0 φ G 1 = A
42 1nn 1
43 12 9 13 8 5 algrp1 φ 1 G 1 + 1 = F G 1
44 42 43 mpan2 φ G 1 + 1 = F G 1
45 41 fveq2d φ F G 1 = F A
46 44 45 eqtrd φ G 1 + 1 = F A
47 41 46 oveq12d φ G 1 D G 1 + 1 = A D F A
48 3 rpred φ K
49 48 recnd φ K
50 49 exp1d φ K 1 = K
51 50 oveq2d φ A D F A K K 1 = A D F A K K
52 17 recnd φ A D F A
53 3 rpne0d φ K 0
54 52 49 53 divcan1d φ A D F A K K = A D F A
55 51 54 eqtrd φ A D F A K K 1 = A D F A
56 40 47 55 3brtr4d φ G 1 D G 1 + 1 A D F A K K 1
57 14 ffvelrnda φ k G k X
58 peano2nn k k + 1
59 ffvelrn G : X k + 1 G k + 1 X
60 14 58 59 syl2an φ k G k + 1 X
61 57 60 jca φ k G k X G k + 1 X
62 6 ralrimivva φ x X y X F x D F y K x D y
63 62 adantr φ k x X y X F x D F y K x D y
64 fveq2 x = G k F x = F G k
65 64 oveq1d x = G k F x D F y = F G k D F y
66 oveq1 x = G k x D y = G k D y
67 66 oveq2d x = G k K x D y = K G k D y
68 65 67 breq12d x = G k F x D F y K x D y F G k D F y K G k D y
69 fveq2 y = G k + 1 F y = F G k + 1
70 69 oveq2d y = G k + 1 F G k D F y = F G k D F G k + 1
71 oveq2 y = G k + 1 G k D y = G k D G k + 1
72 71 oveq2d y = G k + 1 K G k D y = K G k D G k + 1
73 70 72 breq12d y = G k + 1 F G k D F y K G k D y F G k D F G k + 1 K G k D G k + 1
74 68 73 rspc2v G k X G k + 1 X x X y X F x D F y K x D y F G k D F G k + 1 K G k D G k + 1
75 61 63 74 sylc φ k F G k D F G k + 1 K G k D G k + 1
76 11 adantr φ k D Met X
77 5 adantr φ k F : X X
78 77 57 ffvelrnd φ k F G k X
79 77 60 ffvelrnd φ k F G k + 1 X
80 metcl D Met X F G k X F G k + 1 X F G k D F G k + 1
81 76 78 79 80 syl3anc φ k F G k D F G k + 1
82 48 adantr φ k K
83 metcl D Met X G k X G k + 1 X G k D G k + 1
84 76 57 60 83 syl3anc φ k G k D G k + 1
85 82 84 remulcld φ k K G k D G k + 1
86 18 adantr φ k A D F A K
87 58 adantl φ k k + 1
88 87 nnnn0d φ k k + 1 0
89 82 88 reexpcld φ k K k + 1
90 86 89 remulcld φ k A D F A K K k + 1
91 letr F G k D F G k + 1 K G k D G k + 1 A D F A K K k + 1 F G k D F G k + 1 K G k D G k + 1 K G k D G k + 1 A D F A K K k + 1 F G k D F G k + 1 A D F A K K k + 1
92 81 85 90 91 syl3anc φ k F G k D F G k + 1 K G k D G k + 1 K G k D G k + 1 A D F A K K k + 1 F G k D F G k + 1 A D F A K K k + 1
93 75 92 mpand φ k K G k D G k + 1 A D F A K K k + 1 F G k D F G k + 1 A D F A K K k + 1
94 nnnn0 k k 0
95 reexpcl K k 0 K k
96 48 94 95 syl2an φ k K k
97 86 96 remulcld φ k A D F A K K k
98 3 rpgt0d φ 0 < K
99 98 adantr φ k 0 < K
100 lemul1 G k D G k + 1 A D F A K K k K 0 < K G k D G k + 1 A D F A K K k G k D G k + 1 K A D F A K K k K
101 84 97 82 99 100 syl112anc φ k G k D G k + 1 A D F A K K k G k D G k + 1 K A D F A K K k K
102 84 recnd φ k G k D G k + 1
103 49 adantr φ k K
104 102 103 mulcomd φ k G k D G k + 1 K = K G k D G k + 1
105 86 recnd φ k A D F A K
106 96 recnd φ k K k
107 105 106 103 mulassd φ k A D F A K K k K = A D F A K K k K
108 expp1 K k 0 K k + 1 = K k K
109 49 94 108 syl2an φ k K k + 1 = K k K
110 109 oveq2d φ k A D F A K K k + 1 = A D F A K K k K
111 107 110 eqtr4d φ k A D F A K K k K = A D F A K K k + 1
112 104 111 breq12d φ k G k D G k + 1 K A D F A K K k K K G k D G k + 1 A D F A K K k + 1
113 101 112 bitrd φ k G k D G k + 1 A D F A K K k K G k D G k + 1 A D F A K K k + 1
114 12 9 13 8 5 algrp1 φ k G k + 1 = F G k
115 12 9 13 8 5 algrp1 φ k + 1 G k + 1 + 1 = F G k + 1
116 58 115 sylan2 φ k G k + 1 + 1 = F G k + 1
117 114 116 oveq12d φ k G k + 1 D G k + 1 + 1 = F G k D F G k + 1
118 117 breq1d φ k G k + 1 D G k + 1 + 1 A D F A K K k + 1 F G k D F G k + 1 A D F A K K k + 1
119 93 113 118 3imtr4d φ k G k D G k + 1 A D F A K K k G k + 1 D G k + 1 + 1 A D F A K K k + 1
120 119 expcom k φ G k D G k + 1 A D F A K K k G k + 1 D G k + 1 + 1 A D F A K K k + 1
121 120 a2d k φ G k D G k + 1 A D F A K K k φ G k + 1 D G k + 1 + 1 A D F A K K k + 1
122 25 32 39 32 56 121 nnind k φ G k D G k + 1 A D F A K K k
123 122 impcom φ k G k D G k + 1 A D F A K K k
124 11 14 18 3 4 123 geomcau φ G Cau D
125 7 cmetcau D CMet X G Cau D G dom t J
126 1 124 125 syl2anc φ G dom t J
127 metxmet D Met X D ∞Met X
128 7 methaus D ∞Met X J Haus
129 11 127 128 3syl φ J Haus
130 lmfun J Haus Fun t J
131 funfvbrb Fun t J G dom t J G t J t J G
132 129 130 131 3syl φ G dom t J G t J t J G
133 126 132 mpbid φ G t J t J G