Metamath Proof Explorer


Theorem bposlem7

Description: Lemma for bpos . The function F is decreasing. (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Hypotheses bposlem7.1 F=n2Gn+94Gn2+log22n
bposlem7.2 G=x+logxx
bposlem7.3 φA
bposlem7.4 φB
bposlem7.5 φe2A
bposlem7.6 φe2B
Assertion bposlem7 φA<BFB<FA

Proof

Step Hyp Ref Expression
1 bposlem7.1 F=n2Gn+94Gn2+log22n
2 bposlem7.2 G=x+logxx
3 bposlem7.3 φA
4 bposlem7.4 φB
5 bposlem7.5 φe2A
6 bposlem7.6 φe2B
7 4 nnrpd φB+
8 7 rpsqrtcld φB+
9 fveq2 x=Blogx=logB
10 id x=Bx=B
11 9 10 oveq12d x=Blogxx=logBB
12 ovex logBBV
13 11 2 12 fvmpt B+GB=logBB
14 8 13 syl φGB=logBB
15 3 nnrpd φA+
16 15 rpsqrtcld φA+
17 fveq2 x=Alogx=logA
18 id x=Ax=A
19 17 18 oveq12d x=Alogxx=logAA
20 ovex logAAV
21 19 2 20 fvmpt A+GA=logAA
22 16 21 syl φGA=logAA
23 14 22 breq12d φGB<GAlogBB<logAA
24 16 rpred φA
25 15 rprege0d φA0A
26 resqrtth A0AA2=A
27 25 26 syl φA2=A
28 5 27 breqtrrd φe2A2
29 16 rpge0d φ0A
30 ere e
31 0re 0
32 epos 0<e
33 31 30 32 ltleii 0e
34 le2sq e0eA0AeAe2A2
35 30 33 34 mpanl12 A0AeAe2A2
36 24 29 35 syl2anc φeAe2A2
37 28 36 mpbird φeA
38 8 rpred φB
39 7 rprege0d φB0B
40 resqrtth B0BB2=B
41 39 40 syl φB2=B
42 6 41 breqtrrd φe2B2
43 8 rpge0d φ0B
44 le2sq e0eB0BeBe2B2
45 30 33 44 mpanl12 B0BeBe2B2
46 38 43 45 syl2anc φeBe2B2
47 42 46 mpbird φeB
48 logdivlt AeABeBA<BlogBB<logAA
49 24 37 38 47 48 syl22anc φA<BlogBB<logAA
50 24 38 29 43 lt2sqd φA<BA2<B2
51 23 49 50 3bitr2rd φA2<B2GB<GA
52 27 41 breq12d φA2<B2A<B
53 relogcl x+logx
54 rerpdivcl logxx+logxx
55 53 54 mpancom x+logxx
56 2 55 fmpti G:+
57 56 ffvelcdmi B+GB
58 8 57 syl φGB
59 56 ffvelcdmi A+GA
60 16 59 syl φGA
61 2rp 2+
62 rpsqrtcl 2+2+
63 61 62 mp1i φ2+
64 58 60 63 ltmul2d φGB<GA2GB<2GA
65 51 52 64 3bitr3d φA<B2GB<2GA
66 65 biimpd φA<B2GB<2GA
67 3 nnred φA
68 4 nnred φB
69 2re 2
70 2pos 0<2
71 69 70 pm3.2i 20<2
72 71 a1i φ20<2
73 ltdiv1 AB20<2A<BA2<B2
74 67 68 72 73 syl3anc φA<BA2<B2
75 15 rphalfcld φA2+
76 75 rpred φA2
77 30 69 remulcli e2
78 77 a1i φe2
79 30 resqcli e2
80 79 a1i φe2
81 egt2lt3 2<ee<3
82 81 simpli 2<e
83 69 30 82 ltleii 2e
84 69 30 30 lemul2i 0<e2ee2ee
85 32 84 ax-mp 2ee2ee
86 83 85 mpbi e2ee
87 30 recni e
88 87 sqvali e2=ee
89 86 88 breqtrri e2e2
90 89 a1i φe2e2
91 78 80 67 90 5 letrd φe2A
92 lemuldiv eA20<2e2AeA2
93 30 71 92 mp3an13 Ae2AeA2
94 67 93 syl φe2AeA2
95 91 94 mpbid φeA2
96 7 rphalfcld φB2+
97 96 rpred φB2
98 78 80 68 90 6 letrd φe2B
99 lemuldiv eB20<2e2BeB2
100 30 71 99 mp3an13 Be2BeB2
101 68 100 syl φe2BeB2
102 98 101 mpbid φeB2
103 logdivlt A2eA2B2eB2A2<B2logB2B2<logA2A2
104 76 95 97 102 103 syl22anc φA2<B2logB2B2<logA2A2
105 74 104 bitrd φA<BlogB2B2<logA2A2
106 fveq2 x=B2logx=logB2
107 id x=B2x=B2
108 106 107 oveq12d x=B2logxx=logB2B2
109 ovex logB2B2V
110 108 2 109 fvmpt B2+GB2=logB2B2
111 96 110 syl φGB2=logB2B2
112 fveq2 x=A2logx=logA2
113 id x=A2x=A2
114 112 113 oveq12d x=A2logxx=logA2A2
115 ovex logA2A2V
116 114 2 115 fvmpt A2+GA2=logA2A2
117 75 116 syl φGA2=logA2A2
118 111 117 breq12d φGB2<GA2logB2B2<logA2A2
119 56 ffvelcdmi B2+GB2
120 96 119 syl φGB2
121 56 ffvelcdmi A2+GA2
122 75 121 syl φGA2
123 9nn 9
124 4nn 4
125 nnrp 99+
126 nnrp 44+
127 rpdivcl 9+4+94+
128 125 126 127 syl2an 9494+
129 123 124 128 mp2an 94+
130 129 a1i φ94+
131 120 122 130 ltmul2d φGB2<GA294GB2<94GA2
132 105 118 131 3bitr2d φA<B94GB2<94GA2
133 132 biimpd φA<B94GB2<94GA2
134 66 133 jcad φA<B2GB<2GA94GB2<94GA2
135 sqrt2re 2
136 remulcl 2GB2GB
137 135 58 136 sylancr φ2GB
138 9re 9
139 4re 4
140 4ne0 40
141 138 139 140 redivcli 94
142 remulcl 94GB294GB2
143 141 120 142 sylancr φ94GB2
144 remulcl 2GA2GA
145 135 60 144 sylancr φ2GA
146 remulcl 94GA294GA2
147 141 122 146 sylancr φ94GA2
148 lt2add 2GB94GB22GA94GA22GB<2GA94GB2<94GA22GB+94GB2<2GA+94GA2
149 137 143 145 147 148 syl22anc φ2GB<2GA94GB2<94GA22GB+94GB2<2GA+94GA2
150 134 149 syld φA<B2GB+94GB2<2GA+94GA2
151 ltmul2 AB20<2A<B2A<2B
152 67 68 72 151 syl3anc φA<B2A<2B
153 rpmulcl 2+A+2A+
154 61 15 153 sylancr φ2A+
155 154 rpsqrtcld φ2A+
156 rpmulcl 2+B+2B+
157 61 7 156 sylancr φ2B+
158 157 rpsqrtcld φ2B+
159 rprege0 2A+2A02A
160 rprege0 2B+2B02B
161 lt2sq 2A02A2B02B2A<2B2A2<2B2
162 159 160 161 syl2an 2A+2B+2A<2B2A2<2B2
163 155 158 162 syl2anc φ2A<2B2A2<2B2
164 154 rprege0d φ2A02A
165 resqrtth 2A02A2A2=2A
166 164 165 syl φ2A2=2A
167 157 rprege0d φ2B02B
168 resqrtth 2B02B2B2=2B
169 167 168 syl φ2B2=2B
170 166 169 breq12d φ2A2<2B22A<2B
171 163 170 bitr2d φ2A<2B2A<2B
172 1lt2 1<2
173 rplogcl 21<2log2+
174 69 172 173 mp2an log2+
175 174 a1i φlog2+
176 155 158 175 ltdiv2d φ2A<2Blog22B<log22A
177 152 171 176 3bitrd φA<Blog22B<log22A
178 177 biimpd φA<Blog22B<log22A
179 150 178 jcad φA<B2GB+94GB2<2GA+94GA2log22B<log22A
180 137 143 readdcld φ2GB+94GB2
181 rpre log2+log2
182 174 181 ax-mp log2
183 rerpdivcl log22B+log22B
184 182 158 183 sylancr φlog22B
185 145 147 readdcld φ2GA+94GA2
186 rerpdivcl log22A+log22A
187 182 155 186 sylancr φlog22A
188 lt2add 2GB+94GB2log22B2GA+94GA2log22A2GB+94GB2<2GA+94GA2log22B<log22A2GB+94GB2+log22B<2GA+94GA2+log22A
189 180 184 185 187 188 syl22anc φ2GB+94GB2<2GA+94GA2log22B<log22A2GB+94GB2+log22B<2GA+94GA2+log22A
190 179 189 syld φA<B2GB+94GB2+log22B<2GA+94GA2+log22A
191 2fveq3 n=BGn=GB
192 191 oveq2d n=B2Gn=2GB
193 fvoveq1 n=BGn2=GB2
194 193 oveq2d n=B94Gn2=94GB2
195 192 194 oveq12d n=B2Gn+94Gn2=2GB+94GB2
196 oveq2 n=B2n=2B
197 196 fveq2d n=B2n=2B
198 197 oveq2d n=Blog22n=log22B
199 195 198 oveq12d n=B2Gn+94Gn2+log22n=2GB+94GB2+log22B
200 ovex 2GB+94GB2+log22BV
201 199 1 200 fvmpt BFB=2GB+94GB2+log22B
202 4 201 syl φFB=2GB+94GB2+log22B
203 2fveq3 n=AGn=GA
204 203 oveq2d n=A2Gn=2GA
205 fvoveq1 n=AGn2=GA2
206 205 oveq2d n=A94Gn2=94GA2
207 204 206 oveq12d n=A2Gn+94Gn2=2GA+94GA2
208 oveq2 n=A2n=2A
209 208 fveq2d n=A2n=2A
210 209 oveq2d n=Alog22n=log22A
211 207 210 oveq12d n=A2Gn+94Gn2+log22n=2GA+94GA2+log22A
212 ovex 2GA+94GA2+log22AV
213 211 1 212 fvmpt AFA=2GA+94GA2+log22A
214 3 213 syl φFA=2GA+94GA2+log22A
215 202 214 breq12d φFB<FA2GB+94GB2+log22B<2GA+94GA2+log22A
216 190 215 sylibrd φA<BFB<FA