Metamath Proof Explorer


Theorem brsegle

Description: Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion brsegle NA𝔼NB𝔼NC𝔼ND𝔼NABSegCDy𝔼NyBtwnCDABCgrCy

Proof

Step Hyp Ref Expression
1 opex ABV
2 opex CDV
3 eqeq1 p=ABp=abAB=ab
4 eqcom AB=abab=AB
5 3 4 bitrdi p=ABp=abab=AB
6 5 3anbi1d p=ABp=abq=cdy𝔼nyBtwncdabCgrcyab=ABq=cdy𝔼nyBtwncdabCgrcy
7 6 rexbidv p=ABd𝔼np=abq=cdy𝔼nyBtwncdabCgrcyd𝔼nab=ABq=cdy𝔼nyBtwncdabCgrcy
8 7 2rexbidv p=ABb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcyb𝔼nc𝔼nd𝔼nab=ABq=cdy𝔼nyBtwncdabCgrcy
9 8 2rexbidv p=ABna𝔼nb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcyna𝔼nb𝔼nc𝔼nd𝔼nab=ABq=cdy𝔼nyBtwncdabCgrcy
10 eqeq1 q=CDq=cdCD=cd
11 eqcom CD=cdcd=CD
12 10 11 bitrdi q=CDq=cdcd=CD
13 12 3anbi2d q=CDab=ABq=cdy𝔼nyBtwncdabCgrcyab=ABcd=CDy𝔼nyBtwncdabCgrcy
14 13 rexbidv q=CDd𝔼nab=ABq=cdy𝔼nyBtwncdabCgrcyd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcy
15 14 2rexbidv q=CDb𝔼nc𝔼nd𝔼nab=ABq=cdy𝔼nyBtwncdabCgrcyb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcy
16 15 2rexbidv q=CDna𝔼nb𝔼nc𝔼nd𝔼nab=ABq=cdy𝔼nyBtwncdabCgrcyna𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcy
17 df-segle Seg=pq|na𝔼nb𝔼nc𝔼nd𝔼np=abq=cdy𝔼nyBtwncdabCgrcy
18 1 2 9 16 17 brab ABSegCDna𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcy
19 vex aV
20 vex bV
21 19 20 opth ab=ABa=Ab=B
22 vex cV
23 vex dV
24 22 23 opth cd=CDc=Cd=D
25 biid y𝔼nyBtwncdabCgrcyy𝔼nyBtwncdabCgrcy
26 21 24 25 3anbi123i ab=ABcd=CDy𝔼nyBtwncdabCgrcya=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcy
27 26 2rexbii c𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcyc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcy
28 27 2rexbii a𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcya𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcy
29 28 rexbii na𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcyna𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcy
30 simpl2l NA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼N
31 30 ad2antrl a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼nA𝔼N
32 eleenn A𝔼NN
33 31 32 syl a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼nN
34 simprlr a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼nn
35 simprll NA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼nA𝔼n
36 35 adantl a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼nA𝔼n
37 axdimuniq NA𝔼NnA𝔼nN=n
38 33 31 34 36 37 syl22anc a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼nN=n
39 38 fveq2d a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼n𝔼N=𝔼n
40 39 rexeqdv a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼ny𝔼NyBtwnCDABCgrCyy𝔼nyBtwnCDABCgrCy
41 40 exbiri a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼ny𝔼nyBtwnCDABCgrCyy𝔼NyBtwnCDABCgrCy
42 41 anassrs a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼ny𝔼nyBtwnCDABCgrCyy𝔼NyBtwnCDABCgrCy
43 eleq1 a=Aa𝔼nA𝔼n
44 eleq1 b=Bb𝔼nB𝔼n
45 43 44 bi2anan9 a=Ab=Ba𝔼nb𝔼nA𝔼nB𝔼n
46 eleq1 c=Cc𝔼nC𝔼n
47 eleq1 d=Dd𝔼nD𝔼n
48 46 47 bi2anan9 c=Cd=Dc𝔼nd𝔼nC𝔼nD𝔼n
49 45 48 bi2anan9 a=Ab=Bc=Cd=Da𝔼nb𝔼nc𝔼nd𝔼nA𝔼nB𝔼nC𝔼nD𝔼n
50 49 anbi2d a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼nNA𝔼NB𝔼NC𝔼ND𝔼NnA𝔼nB𝔼nC𝔼nD𝔼n
51 opeq12 a=Ab=Bab=AB
52 51 breq1d a=Ab=BabCgrcyABCgrcy
53 52 anbi2d a=Ab=ByBtwncdabCgrcyyBtwncdABCgrcy
54 opeq12 c=Cd=Dcd=CD
55 54 breq2d c=Cd=DyBtwncdyBtwnCD
56 opeq1 c=Ccy=Cy
57 56 breq2d c=CABCgrcyABCgrCy
58 57 adantr c=Cd=DABCgrcyABCgrCy
59 55 58 anbi12d c=Cd=DyBtwncdABCgrcyyBtwnCDABCgrCy
60 53 59 sylan9bb a=Ab=Bc=Cd=DyBtwncdabCgrcyyBtwnCDABCgrCy
61 60 rexbidv a=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼nyBtwnCDABCgrCy
62 61 imbi1d a=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCyy𝔼nyBtwnCDABCgrCyy𝔼NyBtwnCDABCgrCy
63 42 50 62 3imtr4d a=Ab=Bc=Cd=DNA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼ny𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
64 63 com12 NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
65 64 expd NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
66 65 3impd NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
67 66 expr NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
68 67 rexlimdvv NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
69 68 rexlimdvva NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
70 69 rexlimdva NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼na=Ab=Bc=Cd=Dy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
71 29 70 biimtrid NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
72 simpl1 NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyN
73 simpl2l NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyA𝔼N
74 simpl2r NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyB𝔼N
75 simpl3l NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyC𝔼N
76 simpl3r NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyD𝔼N
77 eqidd NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyAB=AB
78 eqidd NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyCD=CD
79 simpr NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyy𝔼NyBtwnCDABCgrCy
80 opeq1 c=Ccd=Cd
81 80 eqeq1d c=Ccd=CDCd=CD
82 80 breq2d c=CyBtwncdyBtwnCd
83 82 57 anbi12d c=CyBtwncdABCgrcyyBtwnCdABCgrCy
84 83 rexbidv c=Cy𝔼NyBtwncdABCgrcyy𝔼NyBtwnCdABCgrCy
85 81 84 3anbi23d c=CAB=ABcd=CDy𝔼NyBtwncdABCgrcyAB=ABCd=CDy𝔼NyBtwnCdABCgrCy
86 opeq2 d=DCd=CD
87 86 eqeq1d d=DCd=CDCD=CD
88 86 breq2d d=DyBtwnCdyBtwnCD
89 88 anbi1d d=DyBtwnCdABCgrCyyBtwnCDABCgrCy
90 89 rexbidv d=Dy𝔼NyBtwnCdABCgrCyy𝔼NyBtwnCDABCgrCy
91 87 90 3anbi23d d=DAB=ABCd=CDy𝔼NyBtwnCdABCgrCyAB=ABCD=CDy𝔼NyBtwnCDABCgrCy
92 85 91 rspc2ev C𝔼ND𝔼NAB=ABCD=CDy𝔼NyBtwnCDABCgrCyc𝔼Nd𝔼NAB=ABcd=CDy𝔼NyBtwncdABCgrcy
93 75 76 77 78 79 92 syl113anc NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyc𝔼Nd𝔼NAB=ABcd=CDy𝔼NyBtwncdABCgrcy
94 opeq1 a=Aab=Ab
95 94 eqeq1d a=Aab=ABAb=AB
96 94 breq1d a=AabCgrcyAbCgrcy
97 96 anbi2d a=AyBtwncdabCgrcyyBtwncdAbCgrcy
98 97 rexbidv a=Ay𝔼NyBtwncdabCgrcyy𝔼NyBtwncdAbCgrcy
99 95 98 3anbi13d a=Aab=ABcd=CDy𝔼NyBtwncdabCgrcyAb=ABcd=CDy𝔼NyBtwncdAbCgrcy
100 99 2rexbidv a=Ac𝔼Nd𝔼Nab=ABcd=CDy𝔼NyBtwncdabCgrcyc𝔼Nd𝔼NAb=ABcd=CDy𝔼NyBtwncdAbCgrcy
101 opeq2 b=BAb=AB
102 101 eqeq1d b=BAb=ABAB=AB
103 101 breq1d b=BAbCgrcyABCgrcy
104 103 anbi2d b=ByBtwncdAbCgrcyyBtwncdABCgrcy
105 104 rexbidv b=By𝔼NyBtwncdAbCgrcyy𝔼NyBtwncdABCgrcy
106 102 105 3anbi13d b=BAb=ABcd=CDy𝔼NyBtwncdAbCgrcyAB=ABcd=CDy𝔼NyBtwncdABCgrcy
107 106 2rexbidv b=Bc𝔼Nd𝔼NAb=ABcd=CDy𝔼NyBtwncdAbCgrcyc𝔼Nd𝔼NAB=ABcd=CDy𝔼NyBtwncdABCgrcy
108 100 107 rspc2ev A𝔼NB𝔼Nc𝔼Nd𝔼NAB=ABcd=CDy𝔼NyBtwncdABCgrcya𝔼Nb𝔼Nc𝔼Nd𝔼Nab=ABcd=CDy𝔼NyBtwncdabCgrcy
109 73 74 93 108 syl3anc NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCya𝔼Nb𝔼Nc𝔼Nd𝔼Nab=ABcd=CDy𝔼NyBtwncdabCgrcy
110 fveq2 n=N𝔼n=𝔼N
111 110 rexeqdv n=Ny𝔼nyBtwncdabCgrcyy𝔼NyBtwncdabCgrcy
112 111 3anbi3d n=Nab=ABcd=CDy𝔼nyBtwncdabCgrcyab=ABcd=CDy𝔼NyBtwncdabCgrcy
113 110 112 rexeqbidv n=Nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcyd𝔼Nab=ABcd=CDy𝔼NyBtwncdabCgrcy
114 110 113 rexeqbidv n=Nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcyc𝔼Nd𝔼Nab=ABcd=CDy𝔼NyBtwncdabCgrcy
115 110 114 rexeqbidv n=Nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcyb𝔼Nc𝔼Nd𝔼Nab=ABcd=CDy𝔼NyBtwncdabCgrcy
116 110 115 rexeqbidv n=Na𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcya𝔼Nb𝔼Nc𝔼Nd𝔼Nab=ABcd=CDy𝔼NyBtwncdabCgrcy
117 116 rspcev Na𝔼Nb𝔼Nc𝔼Nd𝔼Nab=ABcd=CDy𝔼NyBtwncdabCgrcyna𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcy
118 72 109 117 syl2anc NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyna𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcy
119 118 ex NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyna𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcy
120 71 119 impbid NA𝔼NB𝔼NC𝔼ND𝔼Nna𝔼nb𝔼nc𝔼nd𝔼nab=ABcd=CDy𝔼nyBtwncdabCgrcyy𝔼NyBtwnCDABCgrCy
121 18 120 bitrid NA𝔼NB𝔼NC𝔼ND𝔼NABSegCDy𝔼NyBtwnCDABCgrCy