| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
cantnfcl.g |
|
| 5 |
|
cantnfcl.f |
|
| 6 |
|
cantnfval.h |
|
| 7 |
|
cantnfle.c |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
sseq1d |
|
| 10 |
|
ovexd |
|
| 11 |
1 2 3 4 5
|
cantnfcl |
|
| 12 |
11
|
simpld |
|
| 13 |
4
|
oiiso |
|
| 14 |
10 12 13
|
syl2anc |
|
| 15 |
|
isof1o |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
|
f1ocnv |
|
| 19 |
|
f1of |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
7
|
anim1i |
|
| 22 |
1 2 3
|
cantnfs |
|
| 23 |
5 22
|
mpbid |
|
| 24 |
23
|
simpld |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
ffnd |
|
| 27 |
3
|
adantr |
|
| 28 |
|
0ex |
|
| 29 |
28
|
a1i |
|
| 30 |
|
elsuppfn |
|
| 31 |
26 27 29 30
|
syl3anc |
|
| 32 |
21 31
|
mpbird |
|
| 33 |
20 32
|
ffvelcdmd |
|
| 34 |
11
|
simprd |
|
| 35 |
34
|
adantr |
|
| 36 |
|
eqimss |
|
| 37 |
36
|
biantrurd |
|
| 38 |
|
eleq2 |
|
| 39 |
37 38
|
bitr3d |
|
| 40 |
|
fveq2 |
|
| 41 |
40
|
sseq2d |
|
| 42 |
39 41
|
imbi12d |
|
| 43 |
42
|
imbi2d |
|
| 44 |
|
sseq1 |
|
| 45 |
|
eleq2 |
|
| 46 |
44 45
|
anbi12d |
|
| 47 |
|
fveq2 |
|
| 48 |
47
|
sseq2d |
|
| 49 |
46 48
|
imbi12d |
|
| 50 |
|
sseq1 |
|
| 51 |
|
eleq2 |
|
| 52 |
50 51
|
anbi12d |
|
| 53 |
|
fveq2 |
|
| 54 |
53
|
sseq2d |
|
| 55 |
52 54
|
imbi12d |
|
| 56 |
|
sseq1 |
|
| 57 |
|
eleq2 |
|
| 58 |
56 57
|
anbi12d |
|
| 59 |
|
fveq2 |
|
| 60 |
59
|
sseq2d |
|
| 61 |
58 60
|
imbi12d |
|
| 62 |
|
noel |
|
| 63 |
62
|
pm2.21i |
|
| 64 |
63
|
adantl |
|
| 65 |
64
|
a1i |
|
| 66 |
|
fvex |
|
| 67 |
66
|
elsuc |
|
| 68 |
|
sssucid |
|
| 69 |
|
sstr |
|
| 70 |
68 69
|
mpan |
|
| 71 |
70
|
ad2antrl |
|
| 72 |
|
simprr |
|
| 73 |
|
pm2.27 |
|
| 74 |
71 72 73
|
syl2anc |
|
| 75 |
6
|
cantnfvalf |
|
| 76 |
75
|
ffvelcdmi |
|
| 77 |
76
|
ad2antlr |
|
| 78 |
2
|
ad3antrrr |
|
| 79 |
3
|
ad3antrrr |
|
| 80 |
|
suppssdm |
|
| 81 |
80 24
|
fssdm |
|
| 82 |
81
|
ad3antrrr |
|
| 83 |
|
simpr |
|
| 84 |
|
sucidg |
|
| 85 |
84
|
ad2antlr |
|
| 86 |
83 85
|
sseldd |
|
| 87 |
4
|
oif |
|
| 88 |
87
|
ffvelcdmi |
|
| 89 |
86 88
|
syl |
|
| 90 |
82 89
|
sseldd |
|
| 91 |
|
onelon |
|
| 92 |
79 90 91
|
syl2anc |
|
| 93 |
|
oecl |
|
| 94 |
78 92 93
|
syl2anc |
|
| 95 |
24
|
ad3antrrr |
|
| 96 |
95 90
|
ffvelcdmd |
|
| 97 |
|
onelon |
|
| 98 |
78 96 97
|
syl2anc |
|
| 99 |
|
omcl |
|
| 100 |
94 98 99
|
syl2anc |
|
| 101 |
|
oaword2 |
|
| 102 |
77 100 101
|
syl2anc |
|
| 103 |
1 2 3 4 5 6
|
cantnfsuc |
|
| 104 |
103
|
ad4ant13 |
|
| 105 |
102 104
|
sseqtrrd |
|
| 106 |
|
sstr |
|
| 107 |
106
|
expcom |
|
| 108 |
105 107
|
syl |
|
| 109 |
108
|
adantrr |
|
| 110 |
74 109
|
syld |
|
| 111 |
110
|
expr |
|
| 112 |
|
simprr |
|
| 113 |
112
|
fveq2d |
|
| 114 |
|
f1ocnvfv2 |
|
| 115 |
17 32 114
|
syl2anc |
|
| 116 |
115
|
ad2antrr |
|
| 117 |
113 116
|
eqtr3d |
|
| 118 |
117
|
oveq2d |
|
| 119 |
117
|
fveq2d |
|
| 120 |
118 119
|
oveq12d |
|
| 121 |
|
oaword1 |
|
| 122 |
100 77 121
|
syl2anc |
|
| 123 |
122
|
adantrr |
|
| 124 |
120 123
|
eqsstrrd |
|
| 125 |
103
|
ad4ant13 |
|
| 126 |
124 125
|
sseqtrrd |
|
| 127 |
126
|
expr |
|
| 128 |
127
|
a1dd |
|
| 129 |
111 128
|
jaod |
|
| 130 |
67 129
|
biimtrid |
|
| 131 |
130
|
expimpd |
|
| 132 |
131
|
com23 |
|
| 133 |
132
|
expcom |
|
| 134 |
49 55 61 65 133
|
finds2 |
|
| 135 |
43 134
|
vtoclga |
|
| 136 |
35 135
|
mpcom |
|
| 137 |
33 136
|
mpd |
|
| 138 |
1 2 3 4 5 6
|
cantnfval |
|
| 139 |
138
|
adantr |
|
| 140 |
137 139
|
sseqtrrd |
|
| 141 |
|
onelon |
|
| 142 |
3 7 141
|
syl2anc |
|
| 143 |
|
oecl |
|
| 144 |
2 142 143
|
syl2anc |
|
| 145 |
|
om0 |
|
| 146 |
144 145
|
syl |
|
| 147 |
|
0ss |
|
| 148 |
146 147
|
eqsstrdi |
|
| 149 |
9 140 148
|
pm2.61ne |
|