Metamath Proof Explorer


Theorem cantnfle

Description: A lower bound on the CNF function. Since ( ( A CNF B )F ) is defined as the sum of ( A ^o x ) .o ( Fx ) over all x in the support of F , it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all C e. B instead of just those C in the support). (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnfcl.g G=OrdIsoEFsupp
cantnfcl.f φFS
cantnfval.h H=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
cantnfle.c φCB
Assertion cantnfle φA𝑜C𝑜FCACNFBF

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnfcl.g G=OrdIsoEFsupp
5 cantnfcl.f φFS
6 cantnfval.h H=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
7 cantnfle.c φCB
8 oveq2 FC=A𝑜C𝑜FC=A𝑜C𝑜
9 8 sseq1d FC=A𝑜C𝑜FCACNFBFA𝑜C𝑜ACNFBF
10 ovexd φFsuppV
11 1 2 3 4 5 cantnfcl φEWesuppFdomGω
12 11 simpld φEWesuppF
13 4 oiiso FsuppVEWesuppFGIsomE,EdomGFsupp
14 10 12 13 syl2anc φGIsomE,EdomGFsupp
15 isof1o GIsomE,EdomGFsuppG:domG1-1 ontoFsupp
16 14 15 syl φG:domG1-1 ontoFsupp
17 16 adantr φFCG:domG1-1 ontoFsupp
18 f1ocnv G:domG1-1 ontoFsuppG-1:Fsupp1-1 ontodomG
19 f1of G-1:Fsupp1-1 ontodomGG-1:FsuppdomG
20 17 18 19 3syl φFCG-1:FsuppdomG
21 7 anim1i φFCCBFC
22 1 2 3 cantnfs φFSF:BAfinSuppF
23 5 22 mpbid φF:BAfinSuppF
24 23 simpld φF:BA
25 24 adantr φFCF:BA
26 25 ffnd φFCFFnB
27 3 adantr φFCBOn
28 0ex V
29 28 a1i φFCV
30 elsuppfn FFnBBOnVCsuppFCBFC
31 26 27 29 30 syl3anc φFCCsuppFCBFC
32 21 31 mpbird φFCCsuppF
33 20 32 ffvelcdmd φFCG-1CdomG
34 11 simprd φdomGω
35 34 adantr φFCdomGω
36 eqimss x=domGxdomG
37 36 biantrurd x=domGG-1CxxdomGG-1Cx
38 eleq2 x=domGG-1CxG-1CdomG
39 37 38 bitr3d x=domGxdomGG-1CxG-1CdomG
40 fveq2 x=domGHx=HdomG
41 40 sseq2d x=domGA𝑜C𝑜FCHxA𝑜C𝑜FCHdomG
42 39 41 imbi12d x=domGxdomGG-1CxA𝑜C𝑜FCHxG-1CdomGA𝑜C𝑜FCHdomG
43 42 imbi2d x=domGφFCxdomGG-1CxA𝑜C𝑜FCHxφFCG-1CdomGA𝑜C𝑜FCHdomG
44 sseq1 x=xdomGdomG
45 eleq2 x=G-1CxG-1C
46 44 45 anbi12d x=xdomGG-1CxdomGG-1C
47 fveq2 x=Hx=H
48 47 sseq2d x=A𝑜C𝑜FCHxA𝑜C𝑜FCH
49 46 48 imbi12d x=xdomGG-1CxA𝑜C𝑜FCHxdomGG-1CA𝑜C𝑜FCH
50 sseq1 x=yxdomGydomG
51 eleq2 x=yG-1CxG-1Cy
52 50 51 anbi12d x=yxdomGG-1CxydomGG-1Cy
53 fveq2 x=yHx=Hy
54 53 sseq2d x=yA𝑜C𝑜FCHxA𝑜C𝑜FCHy
55 52 54 imbi12d x=yxdomGG-1CxA𝑜C𝑜FCHxydomGG-1CyA𝑜C𝑜FCHy
56 sseq1 x=sucyxdomGsucydomG
57 eleq2 x=sucyG-1CxG-1Csucy
58 56 57 anbi12d x=sucyxdomGG-1CxsucydomGG-1Csucy
59 fveq2 x=sucyHx=Hsucy
60 59 sseq2d x=sucyA𝑜C𝑜FCHxA𝑜C𝑜FCHsucy
61 58 60 imbi12d x=sucyxdomGG-1CxA𝑜C𝑜FCHxsucydomGG-1CsucyA𝑜C𝑜FCHsucy
62 noel ¬G-1C
63 62 pm2.21i G-1CA𝑜C𝑜FCH
64 63 adantl domGG-1CA𝑜C𝑜FCH
65 64 a1i φFCdomGG-1CA𝑜C𝑜FCH
66 fvex G-1CV
67 66 elsuc G-1CsucyG-1CyG-1C=y
68 sssucid ysucy
69 sstr ysucysucydomGydomG
70 68 69 mpan sucydomGydomG
71 70 ad2antrl φFCyωsucydomGG-1CyydomG
72 simprr φFCyωsucydomGG-1CyG-1Cy
73 pm2.27 ydomGG-1CyydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHy
74 71 72 73 syl2anc φFCyωsucydomGG-1CyydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHy
75 6 cantnfvalf H:ωOn
76 75 ffvelcdmi yωHyOn
77 76 ad2antlr φFCyωsucydomGHyOn
78 2 ad3antrrr φFCyωsucydomGAOn
79 3 ad3antrrr φFCyωsucydomGBOn
80 suppssdm FsuppdomF
81 80 24 fssdm φFsuppB
82 81 ad3antrrr φFCyωsucydomGFsuppB
83 simpr φFCyωsucydomGsucydomG
84 sucidg yωysucy
85 84 ad2antlr φFCyωsucydomGysucy
86 83 85 sseldd φFCyωsucydomGydomG
87 4 oif G:domGFsupp
88 87 ffvelcdmi ydomGGysuppF
89 86 88 syl φFCyωsucydomGGysuppF
90 82 89 sseldd φFCyωsucydomGGyB
91 onelon BOnGyBGyOn
92 79 90 91 syl2anc φFCyωsucydomGGyOn
93 oecl AOnGyOnA𝑜GyOn
94 78 92 93 syl2anc φFCyωsucydomGA𝑜GyOn
95 24 ad3antrrr φFCyωsucydomGF:BA
96 95 90 ffvelcdmd φFCyωsucydomGFGyA
97 onelon AOnFGyAFGyOn
98 78 96 97 syl2anc φFCyωsucydomGFGyOn
99 omcl A𝑜GyOnFGyOnA𝑜Gy𝑜FGyOn
100 94 98 99 syl2anc φFCyωsucydomGA𝑜Gy𝑜FGyOn
101 oaword2 HyOnA𝑜Gy𝑜FGyOnHyA𝑜Gy𝑜FGy+𝑜Hy
102 77 100 101 syl2anc φFCyωsucydomGHyA𝑜Gy𝑜FGy+𝑜Hy
103 1 2 3 4 5 6 cantnfsuc φyωHsucy=A𝑜Gy𝑜FGy+𝑜Hy
104 103 ad4ant13 φFCyωsucydomGHsucy=A𝑜Gy𝑜FGy+𝑜Hy
105 102 104 sseqtrrd φFCyωsucydomGHyHsucy
106 sstr A𝑜C𝑜FCHyHyHsucyA𝑜C𝑜FCHsucy
107 106 expcom HyHsucyA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
108 105 107 syl φFCyωsucydomGA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
109 108 adantrr φFCyωsucydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
110 74 109 syld φFCyωsucydomGG-1CyydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
111 110 expr φFCyωsucydomGG-1CyydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
112 simprr φFCyωsucydomGG-1C=yG-1C=y
113 112 fveq2d φFCyωsucydomGG-1C=yGG-1C=Gy
114 f1ocnvfv2 G:domG1-1 ontoFsuppCsuppFGG-1C=C
115 17 32 114 syl2anc φFCGG-1C=C
116 115 ad2antrr φFCyωsucydomGG-1C=yGG-1C=C
117 113 116 eqtr3d φFCyωsucydomGG-1C=yGy=C
118 117 oveq2d φFCyωsucydomGG-1C=yA𝑜Gy=A𝑜C
119 117 fveq2d φFCyωsucydomGG-1C=yFGy=FC
120 118 119 oveq12d φFCyωsucydomGG-1C=yA𝑜Gy𝑜FGy=A𝑜C𝑜FC
121 oaword1 A𝑜Gy𝑜FGyOnHyOnA𝑜Gy𝑜FGyA𝑜Gy𝑜FGy+𝑜Hy
122 100 77 121 syl2anc φFCyωsucydomGA𝑜Gy𝑜FGyA𝑜Gy𝑜FGy+𝑜Hy
123 122 adantrr φFCyωsucydomGG-1C=yA𝑜Gy𝑜FGyA𝑜Gy𝑜FGy+𝑜Hy
124 120 123 eqsstrrd φFCyωsucydomGG-1C=yA𝑜C𝑜FCA𝑜Gy𝑜FGy+𝑜Hy
125 103 ad4ant13 φFCyωsucydomGG-1C=yHsucy=A𝑜Gy𝑜FGy+𝑜Hy
126 124 125 sseqtrrd φFCyωsucydomGG-1C=yA𝑜C𝑜FCHsucy
127 126 expr φFCyωsucydomGG-1C=yA𝑜C𝑜FCHsucy
128 127 a1dd φFCyωsucydomGG-1C=yydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
129 111 128 jaod φFCyωsucydomGG-1CyG-1C=yydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
130 67 129 biimtrid φFCyωsucydomGG-1CsucyydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
131 130 expimpd φFCyωsucydomGG-1CsucyydomGG-1CyA𝑜C𝑜FCHyA𝑜C𝑜FCHsucy
132 131 com23 φFCyωydomGG-1CyA𝑜C𝑜FCHysucydomGG-1CsucyA𝑜C𝑜FCHsucy
133 132 expcom yωφFCydomGG-1CyA𝑜C𝑜FCHysucydomGG-1CsucyA𝑜C𝑜FCHsucy
134 49 55 61 65 133 finds2 xωφFCxdomGG-1CxA𝑜C𝑜FCHx
135 43 134 vtoclga domGωφFCG-1CdomGA𝑜C𝑜FCHdomG
136 35 135 mpcom φFCG-1CdomGA𝑜C𝑜FCHdomG
137 33 136 mpd φFCA𝑜C𝑜FCHdomG
138 1 2 3 4 5 6 cantnfval φACNFBF=HdomG
139 138 adantr φFCACNFBF=HdomG
140 137 139 sseqtrrd φFCA𝑜C𝑜FCACNFBF
141 onelon BOnCBCOn
142 3 7 141 syl2anc φCOn
143 oecl AOnCOnA𝑜COn
144 2 142 143 syl2anc φA𝑜COn
145 om0 A𝑜COnA𝑜C𝑜=
146 144 145 syl φA𝑜C𝑜=
147 0ss ACNFBF
148 146 147 eqsstrdi φA𝑜C𝑜ACNFBF
149 9 140 148 pm2.61ne φA𝑜C𝑜FCACNFBF