Metamath Proof Explorer


Theorem carageniuncllem1

Description: The outer measure of A i^i ( Gn ) is the sum of the outer measures of A i^i ( Fm ) . These are lines 7 to 10 of Step (d) in the proof of Theorem 113C of Fremlin1 p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses carageniuncllem1.o φOOutMeas
carageniuncllem1.s S=CaraGenO
carageniuncllem1.x X=domO
carageniuncllem1.a φAX
carageniuncllem1.re φOA
carageniuncllem1.z Z=M
carageniuncllem1.e φE:ZS
carageniuncllem1.g G=nZi=MnEi
carageniuncllem1.f F=nZEniM..^nEi
carageniuncllem1.k φKZ
Assertion carageniuncllem1 φn=MKOAFn=OAGK

Proof

Step Hyp Ref Expression
1 carageniuncllem1.o φOOutMeas
2 carageniuncllem1.s S=CaraGenO
3 carageniuncllem1.x X=domO
4 carageniuncllem1.a φAX
5 carageniuncllem1.re φOA
6 carageniuncllem1.z Z=M
7 carageniuncllem1.e φE:ZS
8 carageniuncllem1.g G=nZi=MnEi
9 carageniuncllem1.f F=nZEniM..^nEi
10 carageniuncllem1.k φKZ
11 10 6 eleqtrdi φKM
12 eluzfz2 KMKMK
13 11 12 syl φKMK
14 id φφ
15 oveq2 k=MMk=MM
16 15 sumeq1d k=Mn=MkOAFn=n=MMOAFn
17 fveq2 k=MGk=GM
18 17 ineq2d k=MAGk=AGM
19 18 fveq2d k=MOAGk=OAGM
20 16 19 eqeq12d k=Mn=MkOAFn=OAGkn=MMOAFn=OAGM
21 20 imbi2d k=Mφn=MkOAFn=OAGkφn=MMOAFn=OAGM
22 oveq2 k=jMk=Mj
23 22 sumeq1d k=jn=MkOAFn=n=MjOAFn
24 fveq2 k=jGk=Gj
25 24 ineq2d k=jAGk=AGj
26 25 fveq2d k=jOAGk=OAGj
27 23 26 eqeq12d k=jn=MkOAFn=OAGkn=MjOAFn=OAGj
28 27 imbi2d k=jφn=MkOAFn=OAGkφn=MjOAFn=OAGj
29 oveq2 k=j+1Mk=Mj+1
30 29 sumeq1d k=j+1n=MkOAFn=n=Mj+1OAFn
31 fveq2 k=j+1Gk=Gj+1
32 31 ineq2d k=j+1AGk=AGj+1
33 32 fveq2d k=j+1OAGk=OAGj+1
34 30 33 eqeq12d k=j+1n=MkOAFn=OAGkn=Mj+1OAFn=OAGj+1
35 34 imbi2d k=j+1φn=MkOAFn=OAGkφn=Mj+1OAFn=OAGj+1
36 oveq2 k=KMk=MK
37 36 sumeq1d k=Kn=MkOAFn=n=MKOAFn
38 fveq2 k=KGk=GK
39 38 ineq2d k=KAGk=AGK
40 39 fveq2d k=KOAGk=OAGK
41 37 40 eqeq12d k=Kn=MkOAFn=OAGkn=MKOAFn=OAGK
42 41 imbi2d k=Kφn=MkOAFn=OAGkφn=MKOAFn=OAGK
43 eluzel2 KMM
44 11 43 syl φM
45 fzsn MMM=M
46 44 45 syl φMM=M
47 46 sumeq1d φn=MMOAFn=nMOAFn
48 inss1 AFMA
49 48 a1i φAFMA
50 1 3 4 5 49 omessre φOAFM
51 50 recnd φOAFM
52 fveq2 n=MFn=FM
53 52 ineq2d n=MAFn=AFM
54 53 fveq2d n=MOAFn=OAFM
55 54 sumsn MOAFMnMOAFn=OAFM
56 44 51 55 syl2anc φnMOAFn=OAFM
57 eqidd φOAEM=OAEM
58 fveq2 n=MEn=EM
59 oveq2 n=MM..^n=M..^M
60 59 iuneq1d n=MiM..^nEi=iM..^MEi
61 58 60 difeq12d n=MEniM..^nEi=EMiM..^MEi
62 uzid MMM
63 44 62 syl φMM
64 6 a1i φZ=M
65 64 eqcomd φM=Z
66 63 65 eleqtrd φMZ
67 fvex EMV
68 difexg EMVEMiM..^MEiV
69 67 68 ax-mp EMiM..^MEiV
70 69 a1i φEMiM..^MEiV
71 9 61 66 70 fvmptd3 φFM=EMiM..^MEi
72 fzo0 M..^M=
73 iuneq1 M..^M=iM..^MEi=iEi
74 72 73 ax-mp iM..^MEi=iEi
75 0iun iEi=
76 74 75 eqtri iM..^MEi=
77 76 difeq2i EMiM..^MEi=EM
78 77 a1i φEMiM..^MEi=EM
79 dif0 EM=EM
80 79 a1i φEM=EM
81 71 78 80 3eqtrd φFM=EM
82 81 ineq2d φAFM=AEM
83 82 fveq2d φOAFM=OAEM
84 oveq2 n=MMn=MM
85 84 iuneq1d n=Mi=MnEi=i=MMEi
86 ovex MMV
87 fvex EiV
88 86 87 iunex i=MMEiV
89 88 a1i φi=MMEiV
90 8 85 66 89 fvmptd3 φGM=i=MMEi
91 46 iuneq1d φi=MMEi=iMEi
92 fveq2 i=MEi=EM
93 92 iunxsng MiMEi=EM
94 44 93 syl φiMEi=EM
95 90 91 94 3eqtrd φGM=EM
96 95 ineq2d φAGM=AEM
97 96 fveq2d φOAGM=OAEM
98 57 83 97 3eqtr4d φOAFM=OAGM
99 47 56 98 3eqtrd φn=MMOAFn=OAGM
100 99 a1i KMφn=MMOAFn=OAGM
101 simp3 jM..^Kφn=MjOAFn=OAGjφφ
102 simp1 jM..^Kφn=MjOAFn=OAGjφjM..^K
103 id φn=MjOAFn=OAGjφn=MjOAFn=OAGj
104 103 imp φn=MjOAFn=OAGjφn=MjOAFn=OAGj
105 104 3adant1 jM..^Kφn=MjOAFn=OAGjφn=MjOAFn=OAGj
106 elfzouz jM..^KjM
107 106 adantl φjM..^KjM
108 1 adantr φnMj+1OOutMeas
109 4 adantr φnMj+1AX
110 5 adantr φnMj+1OA
111 inss1 AFnA
112 111 a1i φnMj+1AFnA
113 108 3 109 110 112 omessre φnMj+1OAFn
114 113 recnd φnMj+1OAFn
115 114 adantlr φjM..^KnMj+1OAFn
116 fveq2 n=j+1Fn=Fj+1
117 116 ineq2d n=j+1AFn=AFj+1
118 117 fveq2d n=j+1OAFn=OAFj+1
119 107 115 118 fsump1 φjM..^Kn=Mj+1OAFn=n=MjOAFn+OAFj+1
120 119 3adant3 φjM..^Kn=MjOAFn=OAGjn=Mj+1OAFn=n=MjOAFn+OAFj+1
121 oveq1 n=MjOAFn=OAGjn=MjOAFn+OAFj+1=OAGj+OAFj+1
122 121 3ad2ant3 φjM..^Kn=MjOAFn=OAGjn=MjOAFn+OAFj+1=OAGj+OAFj+1
123 fzssp1 MjMj+1
124 iunss1 MjMj+1i=MjEii=Mj+1Ei
125 123 124 ax-mp i=MjEii=Mj+1Ei
126 125 a1i jM..^Ki=MjEii=Mj+1Ei
127 oveq2 n=jMn=Mj
128 127 iuneq1d n=ji=MnEi=i=MjEi
129 106 6 eleqtrrdi jM..^KjZ
130 ovex MjV
131 130 87 iunex i=MjEiV
132 131 a1i jM..^Ki=MjEiV
133 8 128 129 132 fvmptd3 jM..^KGj=i=MjEi
134 oveq2 n=j+1Mn=Mj+1
135 134 iuneq1d n=j+1i=MnEi=i=Mj+1Ei
136 peano2uz jMj+1M
137 106 136 syl jM..^Kj+1M
138 6 eqcomi M=Z
139 137 138 eleqtrdi jM..^Kj+1Z
140 ovex Mj+1V
141 140 87 iunex i=Mj+1EiV
142 141 a1i jM..^Ki=Mj+1EiV
143 8 135 139 142 fvmptd3 jM..^KGj+1=i=Mj+1Ei
144 133 143 sseq12d jM..^KGjGj+1i=MjEii=Mj+1Ei
145 126 144 mpbird jM..^KGjGj+1
146 inabs3 GjGj+1AGj+1Gj=AGj
147 145 146 syl jM..^KAGj+1Gj=AGj
148 147 fveq2d jM..^KOAGj+1Gj=OAGj
149 148 eqcomd jM..^KOAGj=OAGj+1Gj
150 149 adantl φjM..^KOAGj=OAGj+1Gj
151 elfzoelz jM..^Kj
152 fzval3 jMj=M..^j+1
153 151 152 syl jM..^KMj=M..^j+1
154 153 eqcomd jM..^KM..^j+1=Mj
155 154 iuneq1d jM..^KiM..^j+1Ei=i=MjEi
156 155 difeq2d jM..^KEj+1iM..^j+1Ei=Ej+1i=MjEi
157 156 adantl φjM..^KEj+1iM..^j+1Ei=Ej+1i=MjEi
158 fveq2 n=j+1En=Ej+1
159 oveq2 n=j+1M..^n=M..^j+1
160 159 iuneq1d n=j+1iM..^nEi=iM..^j+1Ei
161 158 160 difeq12d n=j+1EniM..^nEi=Ej+1iM..^j+1Ei
162 fvex Ej+1V
163 difexg Ej+1VEj+1iM..^j+1EiV
164 162 163 ax-mp Ej+1iM..^j+1EiV
165 164 a1i jM..^KEj+1iM..^j+1EiV
166 9 161 139 165 fvmptd3 jM..^KFj+1=Ej+1iM..^j+1Ei
167 166 adantl φjM..^KFj+1=Ej+1iM..^j+1Ei
168 nfcv _iEj+1
169 fveq2 i=j+1Ei=Ej+1
170 168 106 169 iunp1 jM..^Ki=Mj+1Ei=i=MjEiEj+1
171 143 170 eqtrd jM..^KGj+1=i=MjEiEj+1
172 171 133 difeq12d jM..^KGj+1Gj=i=MjEiEj+1i=MjEi
173 difundir i=MjEiEj+1i=MjEi=i=MjEii=MjEiEj+1i=MjEi
174 difid i=MjEii=MjEi=
175 174 uneq1i i=MjEii=MjEiEj+1i=MjEi=Ej+1i=MjEi
176 0un Ej+1i=MjEi=Ej+1i=MjEi
177 173 175 176 3eqtri i=MjEiEj+1i=MjEi=Ej+1i=MjEi
178 177 a1i jM..^Ki=MjEiEj+1i=MjEi=Ej+1i=MjEi
179 172 178 eqtrd jM..^KGj+1Gj=Ej+1i=MjEi
180 179 adantl φjM..^KGj+1Gj=Ej+1i=MjEi
181 157 167 180 3eqtr4d φjM..^KFj+1=Gj+1Gj
182 181 ineq2d φjM..^KAFj+1=AGj+1Gj
183 indif2 AGj+1Gj=AGj+1Gj
184 183 eqcomi AGj+1Gj=AGj+1Gj
185 184 a1i φjM..^KAGj+1Gj=AGj+1Gj
186 182 185 eqtr4d φjM..^KAFj+1=AGj+1Gj
187 186 fveq2d φjM..^KOAFj+1=OAGj+1Gj
188 150 187 oveq12d φjM..^KOAGj+OAFj+1=OAGj+1Gj+OAGj+1Gj
189 inss1 AGj+1GjAGj+1
190 inss1 AGj+1A
191 189 190 sstri AGj+1GjA
192 191 a1i φAGj+1GjA
193 1 3 4 5 192 omessre φOAGj+1Gj
194 193 adantr φjM..^KOAGj+1Gj
195 1 adantr φjM..^KOOutMeas
196 4 adantr φjM..^KAX
197 5 adantr φjM..^KOA
198 difss AGj+1GjAGj+1
199 198 190 sstri AGj+1GjA
200 199 a1i φjM..^KAGj+1GjA
201 195 3 196 197 200 omessre φjM..^KOAGj+1Gj
202 rexadd OAGj+1GjOAGj+1GjOAGj+1Gj+𝑒OAGj+1Gj=OAGj+1Gj+OAGj+1Gj
203 194 201 202 syl2anc φjM..^KOAGj+1Gj+𝑒OAGj+1Gj=OAGj+1Gj+OAGj+1Gj
204 203 eqcomd φjM..^KOAGj+1Gj+OAGj+1Gj=OAGj+1Gj+𝑒OAGj+1Gj
205 133 adantl φjM..^KGj=i=MjEi
206 nfv iφ
207 fzfid φMjFin
208 7 adantr φiMjE:ZS
209 elfzuz iMjiM
210 138 a1i iMjM=Z
211 209 210 eleqtrd iMjiZ
212 211 adantl φiMjiZ
213 208 212 ffvelcdmd φiMjEiS
214 206 1 2 207 213 caragenfiiuncl φi=MjEiS
215 214 adantr φjM..^Ki=MjEiS
216 205 215 eqeltrd φjM..^KGjS
217 4 ssinss1d φAGj+1X
218 217 adantr φjM..^KAGj+1X
219 195 2 3 216 218 caragensplit φjM..^KOAGj+1Gj+𝑒OAGj+1Gj=OAGj+1
220 188 204 219 3eqtrd φjM..^KOAGj+OAFj+1=OAGj+1
221 220 3adant3 φjM..^Kn=MjOAFn=OAGjOAGj+OAFj+1=OAGj+1
222 120 122 221 3eqtrd φjM..^Kn=MjOAFn=OAGjn=Mj+1OAFn=OAGj+1
223 101 102 105 222 syl3anc jM..^Kφn=MjOAFn=OAGjφn=Mj+1OAFn=OAGj+1
224 223 3exp jM..^Kφn=MjOAFn=OAGjφn=Mj+1OAFn=OAGj+1
225 21 28 35 42 100 224 fzind2 KMKφn=MKOAFn=OAGK
226 13 14 225 sylc φn=MKOAFn=OAGK