Metamath Proof Explorer


Theorem carageniuncllem1

Description: The outer measure of A i^i ( Gn ) is the sum of the outer measures of A i^i ( Fm ) . These are lines 7 to 10 of Step (d) in the proof of Theorem 113C of Fremlin1 p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses carageniuncllem1.o φ O OutMeas
carageniuncllem1.s S = CaraGen O
carageniuncllem1.x X = dom O
carageniuncllem1.a φ A X
carageniuncllem1.re φ O A
carageniuncllem1.z Z = M
carageniuncllem1.e φ E : Z S
carageniuncllem1.g G = n Z i = M n E i
carageniuncllem1.f F = n Z E n i M ..^ n E i
carageniuncllem1.k φ K Z
Assertion carageniuncllem1 φ n = M K O A F n = O A G K

Proof

Step Hyp Ref Expression
1 carageniuncllem1.o φ O OutMeas
2 carageniuncllem1.s S = CaraGen O
3 carageniuncllem1.x X = dom O
4 carageniuncllem1.a φ A X
5 carageniuncllem1.re φ O A
6 carageniuncllem1.z Z = M
7 carageniuncllem1.e φ E : Z S
8 carageniuncllem1.g G = n Z i = M n E i
9 carageniuncllem1.f F = n Z E n i M ..^ n E i
10 carageniuncllem1.k φ K Z
11 10 6 eleqtrdi φ K M
12 eluzfz2 K M K M K
13 11 12 syl φ K M K
14 id φ φ
15 oveq2 k = M M k = M M
16 15 sumeq1d k = M n = M k O A F n = n = M M O A F n
17 fveq2 k = M G k = G M
18 17 ineq2d k = M A G k = A G M
19 18 fveq2d k = M O A G k = O A G M
20 16 19 eqeq12d k = M n = M k O A F n = O A G k n = M M O A F n = O A G M
21 20 imbi2d k = M φ n = M k O A F n = O A G k φ n = M M O A F n = O A G M
22 oveq2 k = j M k = M j
23 22 sumeq1d k = j n = M k O A F n = n = M j O A F n
24 fveq2 k = j G k = G j
25 24 ineq2d k = j A G k = A G j
26 25 fveq2d k = j O A G k = O A G j
27 23 26 eqeq12d k = j n = M k O A F n = O A G k n = M j O A F n = O A G j
28 27 imbi2d k = j φ n = M k O A F n = O A G k φ n = M j O A F n = O A G j
29 oveq2 k = j + 1 M k = M j + 1
30 29 sumeq1d k = j + 1 n = M k O A F n = n = M j + 1 O A F n
31 fveq2 k = j + 1 G k = G j + 1
32 31 ineq2d k = j + 1 A G k = A G j + 1
33 32 fveq2d k = j + 1 O A G k = O A G j + 1
34 30 33 eqeq12d k = j + 1 n = M k O A F n = O A G k n = M j + 1 O A F n = O A G j + 1
35 34 imbi2d k = j + 1 φ n = M k O A F n = O A G k φ n = M j + 1 O A F n = O A G j + 1
36 oveq2 k = K M k = M K
37 36 sumeq1d k = K n = M k O A F n = n = M K O A F n
38 fveq2 k = K G k = G K
39 38 ineq2d k = K A G k = A G K
40 39 fveq2d k = K O A G k = O A G K
41 37 40 eqeq12d k = K n = M k O A F n = O A G k n = M K O A F n = O A G K
42 41 imbi2d k = K φ n = M k O A F n = O A G k φ n = M K O A F n = O A G K
43 eluzel2 K M M
44 11 43 syl φ M
45 fzsn M M M = M
46 44 45 syl φ M M = M
47 46 sumeq1d φ n = M M O A F n = n M O A F n
48 inss1 A F M A
49 48 a1i φ A F M A
50 1 3 4 5 49 omessre φ O A F M
51 50 recnd φ O A F M
52 fveq2 n = M F n = F M
53 52 ineq2d n = M A F n = A F M
54 53 fveq2d n = M O A F n = O A F M
55 54 sumsn M O A F M n M O A F n = O A F M
56 44 51 55 syl2anc φ n M O A F n = O A F M
57 eqidd φ O A E M = O A E M
58 fveq2 n = M E n = E M
59 oveq2 n = M M ..^ n = M ..^ M
60 59 iuneq1d n = M i M ..^ n E i = i M ..^ M E i
61 58 60 difeq12d n = M E n i M ..^ n E i = E M i M ..^ M E i
62 uzid M M M
63 44 62 syl φ M M
64 6 a1i φ Z = M
65 64 eqcomd φ M = Z
66 63 65 eleqtrd φ M Z
67 fvex E M V
68 difexg E M V E M i M ..^ M E i V
69 67 68 ax-mp E M i M ..^ M E i V
70 69 a1i φ E M i M ..^ M E i V
71 9 61 66 70 fvmptd3 φ F M = E M i M ..^ M E i
72 fzo0 M ..^ M =
73 iuneq1 M ..^ M = i M ..^ M E i = i E i
74 72 73 ax-mp i M ..^ M E i = i E i
75 0iun i E i =
76 74 75 eqtri i M ..^ M E i =
77 76 difeq2i E M i M ..^ M E i = E M
78 77 a1i φ E M i M ..^ M E i = E M
79 dif0 E M = E M
80 79 a1i φ E M = E M
81 71 78 80 3eqtrd φ F M = E M
82 81 ineq2d φ A F M = A E M
83 82 fveq2d φ O A F M = O A E M
84 oveq2 n = M M n = M M
85 84 iuneq1d n = M i = M n E i = i = M M E i
86 ovex M M V
87 fvex E i V
88 86 87 iunex i = M M E i V
89 88 a1i φ i = M M E i V
90 8 85 66 89 fvmptd3 φ G M = i = M M E i
91 46 iuneq1d φ i = M M E i = i M E i
92 fveq2 i = M E i = E M
93 92 iunxsng M i M E i = E M
94 44 93 syl φ i M E i = E M
95 90 91 94 3eqtrd φ G M = E M
96 95 ineq2d φ A G M = A E M
97 96 fveq2d φ O A G M = O A E M
98 57 83 97 3eqtr4d φ O A F M = O A G M
99 47 56 98 3eqtrd φ n = M M O A F n = O A G M
100 99 a1i K M φ n = M M O A F n = O A G M
101 simp3 j M ..^ K φ n = M j O A F n = O A G j φ φ
102 simp1 j M ..^ K φ n = M j O A F n = O A G j φ j M ..^ K
103 id φ n = M j O A F n = O A G j φ n = M j O A F n = O A G j
104 103 imp φ n = M j O A F n = O A G j φ n = M j O A F n = O A G j
105 104 3adant1 j M ..^ K φ n = M j O A F n = O A G j φ n = M j O A F n = O A G j
106 elfzouz j M ..^ K j M
107 106 adantl φ j M ..^ K j M
108 1 adantr φ n M j + 1 O OutMeas
109 4 adantr φ n M j + 1 A X
110 5 adantr φ n M j + 1 O A
111 inss1 A F n A
112 111 a1i φ n M j + 1 A F n A
113 108 3 109 110 112 omessre φ n M j + 1 O A F n
114 113 recnd φ n M j + 1 O A F n
115 114 adantlr φ j M ..^ K n M j + 1 O A F n
116 fveq2 n = j + 1 F n = F j + 1
117 116 ineq2d n = j + 1 A F n = A F j + 1
118 117 fveq2d n = j + 1 O A F n = O A F j + 1
119 107 115 118 fsump1 φ j M ..^ K n = M j + 1 O A F n = n = M j O A F n + O A F j + 1
120 119 3adant3 φ j M ..^ K n = M j O A F n = O A G j n = M j + 1 O A F n = n = M j O A F n + O A F j + 1
121 oveq1 n = M j O A F n = O A G j n = M j O A F n + O A F j + 1 = O A G j + O A F j + 1
122 121 3ad2ant3 φ j M ..^ K n = M j O A F n = O A G j n = M j O A F n + O A F j + 1 = O A G j + O A F j + 1
123 fzssp1 M j M j + 1
124 iunss1 M j M j + 1 i = M j E i i = M j + 1 E i
125 123 124 ax-mp i = M j E i i = M j + 1 E i
126 125 a1i j M ..^ K i = M j E i i = M j + 1 E i
127 oveq2 n = j M n = M j
128 127 iuneq1d n = j i = M n E i = i = M j E i
129 106 6 eleqtrrdi j M ..^ K j Z
130 ovex M j V
131 130 87 iunex i = M j E i V
132 131 a1i j M ..^ K i = M j E i V
133 8 128 129 132 fvmptd3 j M ..^ K G j = i = M j E i
134 oveq2 n = j + 1 M n = M j + 1
135 134 iuneq1d n = j + 1 i = M n E i = i = M j + 1 E i
136 peano2uz j M j + 1 M
137 106 136 syl j M ..^ K j + 1 M
138 6 eqcomi M = Z
139 137 138 eleqtrdi j M ..^ K j + 1 Z
140 ovex M j + 1 V
141 140 87 iunex i = M j + 1 E i V
142 141 a1i j M ..^ K i = M j + 1 E i V
143 8 135 139 142 fvmptd3 j M ..^ K G j + 1 = i = M j + 1 E i
144 133 143 sseq12d j M ..^ K G j G j + 1 i = M j E i i = M j + 1 E i
145 126 144 mpbird j M ..^ K G j G j + 1
146 inabs3 G j G j + 1 A G j + 1 G j = A G j
147 145 146 syl j M ..^ K A G j + 1 G j = A G j
148 147 fveq2d j M ..^ K O A G j + 1 G j = O A G j
149 148 eqcomd j M ..^ K O A G j = O A G j + 1 G j
150 149 adantl φ j M ..^ K O A G j = O A G j + 1 G j
151 elfzoelz j M ..^ K j
152 fzval3 j M j = M ..^ j + 1
153 151 152 syl j M ..^ K M j = M ..^ j + 1
154 153 eqcomd j M ..^ K M ..^ j + 1 = M j
155 154 iuneq1d j M ..^ K i M ..^ j + 1 E i = i = M j E i
156 155 difeq2d j M ..^ K E j + 1 i M ..^ j + 1 E i = E j + 1 i = M j E i
157 156 adantl φ j M ..^ K E j + 1 i M ..^ j + 1 E i = E j + 1 i = M j E i
158 fveq2 n = j + 1 E n = E j + 1
159 oveq2 n = j + 1 M ..^ n = M ..^ j + 1
160 159 iuneq1d n = j + 1 i M ..^ n E i = i M ..^ j + 1 E i
161 158 160 difeq12d n = j + 1 E n i M ..^ n E i = E j + 1 i M ..^ j + 1 E i
162 fvex E j + 1 V
163 difexg E j + 1 V E j + 1 i M ..^ j + 1 E i V
164 162 163 ax-mp E j + 1 i M ..^ j + 1 E i V
165 164 a1i j M ..^ K E j + 1 i M ..^ j + 1 E i V
166 9 161 139 165 fvmptd3 j M ..^ K F j + 1 = E j + 1 i M ..^ j + 1 E i
167 166 adantl φ j M ..^ K F j + 1 = E j + 1 i M ..^ j + 1 E i
168 nfcv _ i E j + 1
169 fveq2 i = j + 1 E i = E j + 1
170 168 106 169 iunp1 j M ..^ K i = M j + 1 E i = i = M j E i E j + 1
171 143 170 eqtrd j M ..^ K G j + 1 = i = M j E i E j + 1
172 171 133 difeq12d j M ..^ K G j + 1 G j = i = M j E i E j + 1 i = M j E i
173 difundir i = M j E i E j + 1 i = M j E i = i = M j E i i = M j E i E j + 1 i = M j E i
174 difid i = M j E i i = M j E i =
175 174 uneq1i i = M j E i i = M j E i E j + 1 i = M j E i = E j + 1 i = M j E i
176 0un E j + 1 i = M j E i = E j + 1 i = M j E i
177 173 175 176 3eqtri i = M j E i E j + 1 i = M j E i = E j + 1 i = M j E i
178 177 a1i j M ..^ K i = M j E i E j + 1 i = M j E i = E j + 1 i = M j E i
179 172 178 eqtrd j M ..^ K G j + 1 G j = E j + 1 i = M j E i
180 179 adantl φ j M ..^ K G j + 1 G j = E j + 1 i = M j E i
181 157 167 180 3eqtr4d φ j M ..^ K F j + 1 = G j + 1 G j
182 181 ineq2d φ j M ..^ K A F j + 1 = A G j + 1 G j
183 indif2 A G j + 1 G j = A G j + 1 G j
184 183 eqcomi A G j + 1 G j = A G j + 1 G j
185 184 a1i φ j M ..^ K A G j + 1 G j = A G j + 1 G j
186 182 185 eqtr4d φ j M ..^ K A F j + 1 = A G j + 1 G j
187 186 fveq2d φ j M ..^ K O A F j + 1 = O A G j + 1 G j
188 150 187 oveq12d φ j M ..^ K O A G j + O A F j + 1 = O A G j + 1 G j + O A G j + 1 G j
189 inss1 A G j + 1 G j A G j + 1
190 inss1 A G j + 1 A
191 189 190 sstri A G j + 1 G j A
192 191 a1i φ A G j + 1 G j A
193 1 3 4 5 192 omessre φ O A G j + 1 G j
194 193 adantr φ j M ..^ K O A G j + 1 G j
195 1 adantr φ j M ..^ K O OutMeas
196 4 adantr φ j M ..^ K A X
197 5 adantr φ j M ..^ K O A
198 difss A G j + 1 G j A G j + 1
199 198 190 sstri A G j + 1 G j A
200 199 a1i φ j M ..^ K A G j + 1 G j A
201 195 3 196 197 200 omessre φ j M ..^ K O A G j + 1 G j
202 rexadd O A G j + 1 G j O A G j + 1 G j O A G j + 1 G j + 𝑒 O A G j + 1 G j = O A G j + 1 G j + O A G j + 1 G j
203 194 201 202 syl2anc φ j M ..^ K O A G j + 1 G j + 𝑒 O A G j + 1 G j = O A G j + 1 G j + O A G j + 1 G j
204 203 eqcomd φ j M ..^ K O A G j + 1 G j + O A G j + 1 G j = O A G j + 1 G j + 𝑒 O A G j + 1 G j
205 133 adantl φ j M ..^ K G j = i = M j E i
206 nfv i φ
207 fzfid φ M j Fin
208 7 adantr φ i M j E : Z S
209 elfzuz i M j i M
210 138 a1i i M j M = Z
211 209 210 eleqtrd i M j i Z
212 211 adantl φ i M j i Z
213 208 212 ffvelrnd φ i M j E i S
214 206 1 2 207 213 caragenfiiuncl φ i = M j E i S
215 214 adantr φ j M ..^ K i = M j E i S
216 205 215 eqeltrd φ j M ..^ K G j S
217 4 ssinss1d φ A G j + 1 X
218 217 adantr φ j M ..^ K A G j + 1 X
219 195 2 3 216 218 caragensplit φ j M ..^ K O A G j + 1 G j + 𝑒 O A G j + 1 G j = O A G j + 1
220 188 204 219 3eqtrd φ j M ..^ K O A G j + O A F j + 1 = O A G j + 1
221 220 3adant3 φ j M ..^ K n = M j O A F n = O A G j O A G j + O A F j + 1 = O A G j + 1
222 120 122 221 3eqtrd φ j M ..^ K n = M j O A F n = O A G j n = M j + 1 O A F n = O A G j + 1
223 101 102 105 222 syl3anc j M ..^ K φ n = M j O A F n = O A G j φ n = M j + 1 O A F n = O A G j + 1
224 223 3exp j M ..^ K φ n = M j O A F n = O A G j φ n = M j + 1 O A F n = O A G j + 1
225 21 28 35 42 100 224 fzind2 K M K φ n = M K O A F n = O A G K
226 13 14 225 sylc φ n = M K O A F n = O A G K