Metamath Proof Explorer


Theorem cdj3i

Description: Two ways to express " A and B are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of Holland p. 1520. (Contributed by NM, 1-Jun-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3.1 AS
cdj3.2 BS
cdj3.3 S=xA+BιzA|wBx=z+w
cdj3.4 T=xA+BιwB|zAx=z+w
cdj3.5 φv0<vuA+BnormSuvnormu
cdj3.6 ψv0<vuA+BnormTuvnormu
Assertion cdj3i v0<vxAyBnormx+normyvnormx+yAB=0φψ

Proof

Step Hyp Ref Expression
1 cdj3.1 AS
2 cdj3.2 BS
3 cdj3.3 S=xA+BιzA|wBx=z+w
4 cdj3.4 T=xA+BιwB|zAx=z+w
5 cdj3.5 φv0<vuA+BnormSuvnormu
6 cdj3.6 ψv0<vuA+BnormTuvnormu
7 1 2 cdj3lem1 v0<vxAyBnormx+normyvnormx+yAB=0
8 1 2 3 cdj3lem2b v0<vxAyBnormx+normyvnormx+yv0<vuA+BnormSuvnormu
9 8 5 sylibr v0<vxAyBnormx+normyvnormx+yφ
10 1 2 4 cdj3lem3b v0<vxAyBnormx+normyvnormx+yv0<vuA+BnormTuvnormu
11 10 6 sylibr v0<vxAyBnormx+normyvnormx+yψ
12 7 9 11 3jca v0<vxAyBnormx+normyvnormx+yAB=0φψ
13 breq2 v=f0<v0<f
14 oveq1 v=fvnormu=fnormu
15 14 breq2d v=fnormSuvnormunormSufnormu
16 15 ralbidv v=fuA+BnormSuvnormuuA+BnormSufnormu
17 13 16 anbi12d v=f0<vuA+BnormSuvnormu0<fuA+BnormSufnormu
18 17 cbvrexvw v0<vuA+BnormSuvnormuf0<fuA+BnormSufnormu
19 5 18 bitri φf0<fuA+BnormSufnormu
20 breq2 v=g0<v0<g
21 oveq1 v=gvnormu=gnormu
22 21 breq2d v=gnormTuvnormunormTugnormu
23 22 ralbidv v=guA+BnormTuvnormuuA+BnormTugnormu
24 20 23 anbi12d v=g0<vuA+BnormTuvnormu0<guA+BnormTugnormu
25 24 cbvrexvw v0<vuA+BnormTuvnormug0<guA+BnormTugnormu
26 6 25 bitri ψg0<guA+BnormTugnormu
27 19 26 anbi12i φψf0<fuA+BnormSufnormug0<guA+BnormTugnormu
28 reeanv fg0<fuA+BnormSufnormu0<guA+BnormTugnormuf0<fuA+BnormSufnormug0<guA+BnormTugnormu
29 27 28 bitr4i φψfg0<fuA+BnormSufnormu0<guA+BnormTugnormu
30 an4 0<fuA+BnormSufnormu0<guA+BnormTugnormu0<f0<guA+BnormSufnormuuA+BnormTugnormu
31 addgt0 fg0<f0<g0<f+g
32 31 ex fg0<f0<g0<f+g
33 32 adantl AB=0fg0<f0<g0<f+g
34 1 2 shsvai tAhBt+hA+B
35 2fveq3 u=t+hnormSu=normSt+h
36 fveq2 u=t+hnormu=normt+h
37 36 oveq2d u=t+hfnormu=fnormt+h
38 35 37 breq12d u=t+hnormSufnormunormSt+hfnormt+h
39 38 rspcv t+hA+BuA+BnormSufnormunormSt+hfnormt+h
40 2fveq3 u=t+hnormTu=normTt+h
41 36 oveq2d u=t+hgnormu=gnormt+h
42 40 41 breq12d u=t+hnormTugnormunormTt+hgnormt+h
43 42 rspcv t+hA+BuA+BnormTugnormunormTt+hgnormt+h
44 39 43 anim12d t+hA+BuA+BnormSufnormuuA+BnormTugnormunormSt+hfnormt+hnormTt+hgnormt+h
45 34 44 syl tAhBuA+BnormSufnormuuA+BnormTugnormunormSt+hfnormt+hnormTt+hgnormt+h
46 45 adantl AB=0fgtAhBuA+BnormSufnormuuA+BnormTugnormunormSt+hfnormt+hnormTt+hgnormt+h
47 1 sheli tAt
48 normcl tnormt
49 47 48 syl tAnormt
50 2 sheli hBh
51 normcl hnormh
52 50 51 syl hBnormh
53 49 52 anim12i tAhBnormtnormh
54 53 adantl fgtAhBnormtnormh
55 hvaddcl tht+h
56 47 50 55 syl2an tAhBt+h
57 normcl t+hnormt+h
58 56 57 syl tAhBnormt+h
59 remulcl fnormt+hfnormt+h
60 58 59 sylan2 ftAhBfnormt+h
61 60 adantlr fgtAhBfnormt+h
62 remulcl gnormt+hgnormt+h
63 58 62 sylan2 gtAhBgnormt+h
64 63 adantll fgtAhBgnormt+h
65 le2add normtnormhfnormt+hgnormt+hnormtfnormt+hnormhgnormt+hnormt+normhfnormt+h+gnormt+h
66 54 61 64 65 syl12anc fgtAhBnormtfnormt+hnormhgnormt+hnormt+normhfnormt+h+gnormt+h
67 66 adantll AB=0fgtAhBnormtfnormt+hnormhgnormt+hnormt+normhfnormt+h+gnormt+h
68 1 2 3 cdj3lem2 tAhBAB=0St+h=t
69 68 fveq2d tAhBAB=0normSt+h=normt
70 69 breq1d tAhBAB=0normSt+hfnormt+hnormtfnormt+h
71 1 2 4 cdj3lem3 tAhBAB=0Tt+h=h
72 71 fveq2d tAhBAB=0normTt+h=normh
73 72 breq1d tAhBAB=0normTt+hgnormt+hnormhgnormt+h
74 70 73 anbi12d tAhBAB=0normSt+hfnormt+hnormTt+hgnormt+hnormtfnormt+hnormhgnormt+h
75 74 3expa tAhBAB=0normSt+hfnormt+hnormTt+hgnormt+hnormtfnormt+hnormhgnormt+h
76 75 ancoms AB=0tAhBnormSt+hfnormt+hnormTt+hgnormt+hnormtfnormt+hnormhgnormt+h
77 76 adantlr AB=0fgtAhBnormSt+hfnormt+hnormTt+hgnormt+hnormtfnormt+hnormhgnormt+h
78 recn ff
79 recn gg
80 58 recnd tAhBnormt+h
81 adddir fgnormt+hf+gnormt+h=fnormt+h+gnormt+h
82 78 79 80 81 syl3an fgtAhBf+gnormt+h=fnormt+h+gnormt+h
83 82 3expa fgtAhBf+gnormt+h=fnormt+h+gnormt+h
84 83 breq2d fgtAhBnormt+normhf+gnormt+hnormt+normhfnormt+h+gnormt+h
85 84 adantll AB=0fgtAhBnormt+normhf+gnormt+hnormt+normhfnormt+h+gnormt+h
86 67 77 85 3imtr4d AB=0fgtAhBnormSt+hfnormt+hnormTt+hgnormt+hnormt+normhf+gnormt+h
87 46 86 syld AB=0fgtAhBuA+BnormSufnormuuA+BnormTugnormunormt+normhf+gnormt+h
88 87 ralrimdvva AB=0fguA+BnormSufnormuuA+BnormTugnormutAhBnormt+normhf+gnormt+h
89 readdcl fgf+g
90 breq2 v=f+g0<v0<f+g
91 fveq2 x=tnormx=normt
92 91 oveq1d x=tnormx+normy=normt+normy
93 fvoveq1 x=tnormx+y=normt+y
94 93 oveq2d x=tvnormx+y=vnormt+y
95 92 94 breq12d x=tnormx+normyvnormx+ynormt+normyvnormt+y
96 fveq2 y=hnormy=normh
97 96 oveq2d y=hnormt+normy=normt+normh
98 oveq2 y=ht+y=t+h
99 98 fveq2d y=hnormt+y=normt+h
100 99 oveq2d y=hvnormt+y=vnormt+h
101 97 100 breq12d y=hnormt+normyvnormt+ynormt+normhvnormt+h
102 95 101 cbvral2vw xAyBnormx+normyvnormx+ytAhBnormt+normhvnormt+h
103 oveq1 v=f+gvnormt+h=f+gnormt+h
104 103 breq2d v=f+gnormt+normhvnormt+hnormt+normhf+gnormt+h
105 104 2ralbidv v=f+gtAhBnormt+normhvnormt+htAhBnormt+normhf+gnormt+h
106 102 105 bitrid v=f+gxAyBnormx+normyvnormx+ytAhBnormt+normhf+gnormt+h
107 90 106 anbi12d v=f+g0<vxAyBnormx+normyvnormx+y0<f+gtAhBnormt+normhf+gnormt+h
108 107 rspcev f+g0<f+gtAhBnormt+normhf+gnormt+hv0<vxAyBnormx+normyvnormx+y
109 108 ex f+g0<f+gtAhBnormt+normhf+gnormt+hv0<vxAyBnormx+normyvnormx+y
110 89 109 syl fg0<f+gtAhBnormt+normhf+gnormt+hv0<vxAyBnormx+normyvnormx+y
111 110 adantl AB=0fg0<f+gtAhBnormt+normhf+gnormt+hv0<vxAyBnormx+normyvnormx+y
112 33 88 111 syl2and AB=0fg0<f0<guA+BnormSufnormuuA+BnormTugnormuv0<vxAyBnormx+normyvnormx+y
113 30 112 biimtrid AB=0fg0<fuA+BnormSufnormu0<guA+BnormTugnormuv0<vxAyBnormx+normyvnormx+y
114 113 rexlimdvva AB=0fg0<fuA+BnormSufnormu0<guA+BnormTugnormuv0<vxAyBnormx+normyvnormx+y
115 29 114 biimtrid AB=0φψv0<vxAyBnormx+normyvnormx+y
116 115 3impib AB=0φψv0<vxAyBnormx+normyvnormx+y
117 12 116 impbii v0<vxAyBnormx+normyvnormx+yAB=0φψ