| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chfacfisf.a |
|
| 2 |
|
chfacfisf.b |
|
| 3 |
|
chfacfisf.p |
|
| 4 |
|
chfacfisf.y |
|
| 5 |
|
chfacfisf.r |
|
| 6 |
|
chfacfisf.s |
|
| 7 |
|
chfacfisf.0 |
|
| 8 |
|
chfacfisf.t |
|
| 9 |
|
chfacfisf.g |
|
| 10 |
3 4
|
pmatring |
|
| 11 |
10
|
3adant3 |
|
| 12 |
|
ringgrp |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
adantr |
|
| 15 |
|
eqid |
|
| 16 |
15 7
|
ring0cl |
|
| 17 |
11 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
11
|
adantr |
|
| 20 |
8 1 2 3 4
|
mat2pmatbas |
|
| 21 |
20
|
adantr |
|
| 22 |
|
3simpa |
|
| 23 |
|
elmapi |
|
| 24 |
23
|
adantl |
|
| 25 |
|
nnnn0 |
|
| 26 |
|
nn0uz |
|
| 27 |
25 26
|
eleqtrdi |
|
| 28 |
|
eluzfz1 |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
adantr |
|
| 31 |
24 30
|
ffvelcdmd |
|
| 32 |
22 31
|
anim12i |
|
| 33 |
|
df-3an |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
8 1 2 3 4
|
mat2pmatbas |
|
| 36 |
34 35
|
syl |
|
| 37 |
15 5
|
ringcl |
|
| 38 |
19 21 36 37
|
syl3anc |
|
| 39 |
15 6
|
grpsubcl |
|
| 40 |
14 18 38 39
|
syl3anc |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
25
|
adantr |
|
| 43 |
22 42
|
anim12i |
|
| 44 |
|
df-3an |
|
| 45 |
43 44
|
sylibr |
|
| 46 |
|
eluzfz2 |
|
| 47 |
27 46
|
syl |
|
| 48 |
47
|
anim1ci |
|
| 49 |
48
|
adantl |
|
| 50 |
1 2 3 4 8
|
m2pmfzmap |
|
| 51 |
45 49 50
|
syl2anc |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
18
|
ad4antr |
|
| 55 |
|
nn0re |
|
| 56 |
55
|
adantl |
|
| 57 |
|
peano2nn |
|
| 58 |
57
|
nnred |
|
| 59 |
58
|
adantr |
|
| 60 |
56 59
|
lenltd |
|
| 61 |
|
nesym |
|
| 62 |
|
ltlen |
|
| 63 |
55 58 62
|
syl2anr |
|
| 64 |
63
|
biimprd |
|
| 65 |
64
|
expcomd |
|
| 66 |
61 65
|
biimtrrid |
|
| 67 |
66
|
com23 |
|
| 68 |
60 67
|
sylbird |
|
| 69 |
68
|
impcomd |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
ad2antrl |
|
| 72 |
71
|
imp |
|
| 73 |
72
|
adantr |
|
| 74 |
10 12
|
syl |
|
| 75 |
74
|
3adant3 |
|
| 76 |
75
|
ad4antr |
|
| 77 |
22
|
ad4antr |
|
| 78 |
24
|
ad4antlr |
|
| 79 |
|
neqne |
|
| 80 |
79
|
anim2i |
|
| 81 |
|
elnnne0 |
|
| 82 |
80 81
|
sylibr |
|
| 83 |
|
nnm1nn0 |
|
| 84 |
82 83
|
syl |
|
| 85 |
84
|
ad4ant23 |
|
| 86 |
42
|
ad4antlr |
|
| 87 |
63
|
simprbda |
|
| 88 |
56
|
adantr |
|
| 89 |
|
1red |
|
| 90 |
|
nnre |
|
| 91 |
90
|
ad2antrr |
|
| 92 |
88 89 91
|
lesubaddd |
|
| 93 |
87 92
|
mpbird |
|
| 94 |
93
|
exp31 |
|
| 95 |
94
|
ad2antrl |
|
| 96 |
95
|
imp |
|
| 97 |
96
|
adantr |
|
| 98 |
97
|
imp |
|
| 99 |
|
elfz2nn0 |
|
| 100 |
85 86 98 99
|
syl3anbrc |
|
| 101 |
78 100
|
ffvelcdmd |
|
| 102 |
|
df-3an |
|
| 103 |
77 101 102
|
sylanbrc |
|
| 104 |
8 1 2 3 4
|
mat2pmatbas |
|
| 105 |
103 104
|
syl |
|
| 106 |
19
|
ad2antrr |
|
| 107 |
21
|
ad2antrr |
|
| 108 |
45
|
ad2antrr |
|
| 109 |
|
simprr |
|
| 110 |
109
|
ad2antrr |
|
| 111 |
|
simplr |
|
| 112 |
25
|
ad2antrr |
|
| 113 |
|
nn0z |
|
| 114 |
|
nnz |
|
| 115 |
|
zleltp1 |
|
| 116 |
113 114 115
|
syl2anr |
|
| 117 |
116
|
biimpar |
|
| 118 |
|
elfz2nn0 |
|
| 119 |
111 112 117 118
|
syl3anbrc |
|
| 120 |
119
|
exp31 |
|
| 121 |
120
|
ad2antrl |
|
| 122 |
121
|
imp31 |
|
| 123 |
1 2 3 4 8
|
m2pmfzmap |
|
| 124 |
108 110 122 123
|
syl12anc |
|
| 125 |
15 5
|
ringcl |
|
| 126 |
106 107 124 125
|
syl3anc |
|
| 127 |
126
|
adantlr |
|
| 128 |
15 6
|
grpsubcl |
|
| 129 |
76 105 127 128
|
syl3anc |
|
| 130 |
129
|
ex |
|
| 131 |
73 130
|
syld |
|
| 132 |
131
|
impl |
|
| 133 |
54 132
|
ifclda |
|
| 134 |
53 133
|
ifclda |
|
| 135 |
41 134
|
ifclda |
|
| 136 |
135 9
|
fmptd |
|