Metamath Proof Explorer


Theorem chfacfisf

Description: The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A=NMatR
chfacfisf.b B=BaseA
chfacfisf.p P=Poly1R
chfacfisf.y Y=NMatP
chfacfisf.r ×˙=Y
chfacfisf.s -˙=-Y
chfacfisf.0 0˙=0Y
chfacfisf.t T=NmatToPolyMatR
chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
Assertion chfacfisf NFinRRingMBsbB0sG:0BaseY

Proof

Step Hyp Ref Expression
1 chfacfisf.a A=NMatR
2 chfacfisf.b B=BaseA
3 chfacfisf.p P=Poly1R
4 chfacfisf.y Y=NMatP
5 chfacfisf.r ×˙=Y
6 chfacfisf.s -˙=-Y
7 chfacfisf.0 0˙=0Y
8 chfacfisf.t T=NmatToPolyMatR
9 chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 3 4 pmatring NFinRRingYRing
11 10 3adant3 NFinRRingMBYRing
12 ringgrp YRingYGrp
13 11 12 syl NFinRRingMBYGrp
14 13 adantr NFinRRingMBsbB0sYGrp
15 eqid BaseY=BaseY
16 15 7 ring0cl YRing0˙BaseY
17 11 16 syl NFinRRingMB0˙BaseY
18 17 adantr NFinRRingMBsbB0s0˙BaseY
19 11 adantr NFinRRingMBsbB0sYRing
20 8 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
21 20 adantr NFinRRingMBsbB0sTMBaseY
22 3simpa NFinRRingMBNFinRRing
23 elmapi bB0sb:0sB
24 23 adantl sbB0sb:0sB
25 nnnn0 ss0
26 nn0uz 0=0
27 25 26 eleqtrdi ss0
28 eluzfz1 s000s
29 27 28 syl s00s
30 29 adantr sbB0s00s
31 24 30 ffvelcdmd sbB0sb0B
32 22 31 anim12i NFinRRingMBsbB0sNFinRRingb0B
33 df-3an NFinRRingb0BNFinRRingb0B
34 32 33 sylibr NFinRRingMBsbB0sNFinRRingb0B
35 8 1 2 3 4 mat2pmatbas NFinRRingb0BTb0BaseY
36 34 35 syl NFinRRingMBsbB0sTb0BaseY
37 15 5 ringcl YRingTMBaseYTb0BaseYTM×˙Tb0BaseY
38 19 21 36 37 syl3anc NFinRRingMBsbB0sTM×˙Tb0BaseY
39 15 6 grpsubcl YGrp0˙BaseYTM×˙Tb0BaseY0˙-˙TM×˙Tb0BaseY
40 14 18 38 39 syl3anc NFinRRingMBsbB0s0˙-˙TM×˙Tb0BaseY
41 40 ad2antrr NFinRRingMBsbB0sn0n=00˙-˙TM×˙Tb0BaseY
42 25 adantr sbB0ss0
43 22 42 anim12i NFinRRingMBsbB0sNFinRRings0
44 df-3an NFinRRings0NFinRRings0
45 43 44 sylibr NFinRRingMBsbB0sNFinRRings0
46 eluzfz2 s0s0s
47 27 46 syl ss0s
48 47 anim1ci sbB0sbB0ss0s
49 48 adantl NFinRRingMBsbB0sbB0ss0s
50 1 2 3 4 8 m2pmfzmap NFinRRings0bB0ss0sTbsBaseY
51 45 49 50 syl2anc NFinRRingMBsbB0sTbsBaseY
52 51 adantr NFinRRingMBsbB0sn0TbsBaseY
53 52 ad2antrr NFinRRingMBsbB0sn0¬n=0n=s+1TbsBaseY
54 18 ad4antr NFinRRingMBsbB0sn0¬n=0¬n=s+1s+1<n0˙BaseY
55 nn0re n0n
56 55 adantl sn0n
57 peano2nn ss+1
58 57 nnred ss+1
59 58 adantr sn0s+1
60 56 59 lenltd sn0ns+1¬s+1<n
61 nesym s+1n¬n=s+1
62 ltlen ns+1n<s+1ns+1s+1n
63 55 58 62 syl2anr sn0n<s+1ns+1s+1n
64 63 biimprd sn0ns+1s+1nn<s+1
65 64 expcomd sn0s+1nns+1n<s+1
66 61 65 biimtrrid sn0¬n=s+1ns+1n<s+1
67 66 com23 sn0ns+1¬n=s+1n<s+1
68 60 67 sylbird sn0¬s+1<n¬n=s+1n<s+1
69 68 impcomd sn0¬n=s+1¬s+1<nn<s+1
70 69 ex sn0¬n=s+1¬s+1<nn<s+1
71 70 ad2antrl NFinRRingMBsbB0sn0¬n=s+1¬s+1<nn<s+1
72 71 imp NFinRRingMBsbB0sn0¬n=s+1¬s+1<nn<s+1
73 72 adantr NFinRRingMBsbB0sn0¬n=0¬n=s+1¬s+1<nn<s+1
74 10 12 syl NFinRRingYGrp
75 74 3adant3 NFinRRingMBYGrp
76 75 ad4antr NFinRRingMBsbB0sn0¬n=0n<s+1YGrp
77 22 ad4antr NFinRRingMBsbB0sn0¬n=0n<s+1NFinRRing
78 24 ad4antlr NFinRRingMBsbB0sn0¬n=0n<s+1b:0sB
79 neqne ¬n=0n0
80 79 anim2i n0¬n=0n0n0
81 elnnne0 nn0n0
82 80 81 sylibr n0¬n=0n
83 nnm1nn0 nn10
84 82 83 syl n0¬n=0n10
85 84 ad4ant23 NFinRRingMBsbB0sn0¬n=0n<s+1n10
86 42 ad4antlr NFinRRingMBsbB0sn0¬n=0n<s+1s0
87 63 simprbda sn0n<s+1ns+1
88 56 adantr sn0n<s+1n
89 1red sn0n<s+11
90 nnre ss
91 90 ad2antrr sn0n<s+1s
92 88 89 91 lesubaddd sn0n<s+1n1sns+1
93 87 92 mpbird sn0n<s+1n1s
94 93 exp31 sn0n<s+1n1s
95 94 ad2antrl NFinRRingMBsbB0sn0n<s+1n1s
96 95 imp NFinRRingMBsbB0sn0n<s+1n1s
97 96 adantr NFinRRingMBsbB0sn0¬n=0n<s+1n1s
98 97 imp NFinRRingMBsbB0sn0¬n=0n<s+1n1s
99 elfz2nn0 n10sn10s0n1s
100 85 86 98 99 syl3anbrc NFinRRingMBsbB0sn0¬n=0n<s+1n10s
101 78 100 ffvelcdmd NFinRRingMBsbB0sn0¬n=0n<s+1bn1B
102 df-3an NFinRRingbn1BNFinRRingbn1B
103 77 101 102 sylanbrc NFinRRingMBsbB0sn0¬n=0n<s+1NFinRRingbn1B
104 8 1 2 3 4 mat2pmatbas NFinRRingbn1BTbn1BaseY
105 103 104 syl NFinRRingMBsbB0sn0¬n=0n<s+1Tbn1BaseY
106 19 ad2antrr NFinRRingMBsbB0sn0n<s+1YRing
107 21 ad2antrr NFinRRingMBsbB0sn0n<s+1TMBaseY
108 45 ad2antrr NFinRRingMBsbB0sn0n<s+1NFinRRings0
109 simprr NFinRRingMBsbB0sbB0s
110 109 ad2antrr NFinRRingMBsbB0sn0n<s+1bB0s
111 simplr sn0n<s+1n0
112 25 ad2antrr sn0n<s+1s0
113 nn0z n0n
114 nnz ss
115 zleltp1 nsnsn<s+1
116 113 114 115 syl2anr sn0nsn<s+1
117 116 biimpar sn0n<s+1ns
118 elfz2nn0 n0sn0s0ns
119 111 112 117 118 syl3anbrc sn0n<s+1n0s
120 119 exp31 sn0n<s+1n0s
121 120 ad2antrl NFinRRingMBsbB0sn0n<s+1n0s
122 121 imp31 NFinRRingMBsbB0sn0n<s+1n0s
123 1 2 3 4 8 m2pmfzmap NFinRRings0bB0sn0sTbnBaseY
124 108 110 122 123 syl12anc NFinRRingMBsbB0sn0n<s+1TbnBaseY
125 15 5 ringcl YRingTMBaseYTbnBaseYTM×˙TbnBaseY
126 106 107 124 125 syl3anc NFinRRingMBsbB0sn0n<s+1TM×˙TbnBaseY
127 126 adantlr NFinRRingMBsbB0sn0¬n=0n<s+1TM×˙TbnBaseY
128 15 6 grpsubcl YGrpTbn1BaseYTM×˙TbnBaseYTbn1-˙TM×˙TbnBaseY
129 76 105 127 128 syl3anc NFinRRingMBsbB0sn0¬n=0n<s+1Tbn1-˙TM×˙TbnBaseY
130 129 ex NFinRRingMBsbB0sn0¬n=0n<s+1Tbn1-˙TM×˙TbnBaseY
131 73 130 syld NFinRRingMBsbB0sn0¬n=0¬n=s+1¬s+1<nTbn1-˙TM×˙TbnBaseY
132 131 impl NFinRRingMBsbB0sn0¬n=0¬n=s+1¬s+1<nTbn1-˙TM×˙TbnBaseY
133 54 132 ifclda NFinRRingMBsbB0sn0¬n=0¬n=s+1ifs+1<n0˙Tbn1-˙TM×˙TbnBaseY
134 53 133 ifclda NFinRRingMBsbB0sn0¬n=0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙TbnBaseY
135 41 134 ifclda NFinRRingMBsbB0sn0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙TbnBaseY
136 135 9 fmptd NFinRRingMBsbB0sG:0BaseY