Metamath Proof Explorer


Theorem chpscmat

Description: The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses chp0mat.c C=NCharPlyMatR
chp0mat.p P=Poly1R
chp0mat.a A=NMatR
chp0mat.x X=var1R
chp0mat.g G=mulGrpP
chp0mat.m ×˙=G
chpscmat.d D=mBaseA|cBaseRiNjNimj=ifi=jc0R
chpscmat.s S=algScP
chpscmat.m -˙=-P
Assertion chpscmat NFinRCRingMDINnNnMn=ECM=N×˙X-˙SE

Proof

Step Hyp Ref Expression
1 chp0mat.c C=NCharPlyMatR
2 chp0mat.p P=Poly1R
3 chp0mat.a A=NMatR
4 chp0mat.x X=var1R
5 chp0mat.g G=mulGrpP
6 chp0mat.m ×˙=G
7 chpscmat.d D=mBaseA|cBaseRiNjNimj=ifi=jc0R
8 chpscmat.s S=algScP
9 chpscmat.m -˙=-P
10 simpll NFinRCRingMDINnNnMn=ENFin
11 simplr NFinRCRingMDINnNnMn=ERCRing
12 elrabi MmBaseA|cBaseRiNjNimj=ifi=jc0RMBaseA
13 12 7 eleq2s MDMBaseA
14 13 3ad2ant1 MDINnNnMn=EMBaseA
15 14 adantl NFinRCRingMDINnNnMn=EMBaseA
16 oveq m=Mimj=iMj
17 16 eqeq1d m=Mimj=ifi=jc0RiMj=ifi=jc0R
18 17 2ralbidv m=MiNjNimj=ifi=jc0RiNjNiMj=ifi=jc0R
19 18 rexbidv m=McBaseRiNjNimj=ifi=jc0RcBaseRiNjNiMj=ifi=jc0R
20 19 elrab MmBaseA|cBaseRiNjNimj=ifi=jc0RMBaseAcBaseRiNjNiMj=ifi=jc0R
21 ifnefalse ijifi=jc0R=0R
22 21 eqeq2d ijiMj=ifi=jc0RiMj=0R
23 22 biimpcd iMj=ifi=jc0RijiMj=0R
24 23 a1i MBaseAcBaseRNFinRCRingiNjNiMj=ifi=jc0RijiMj=0R
25 24 ralimdva MBaseAcBaseRNFinRCRingiNjNiMj=ifi=jc0RjNijiMj=0R
26 25 ralimdva MBaseAcBaseRNFinRCRingiNjNiMj=ifi=jc0RiNjNijiMj=0R
27 26 ex MBaseAcBaseRNFinRCRingiNjNiMj=ifi=jc0RiNjNijiMj=0R
28 27 com23 MBaseAcBaseRiNjNiMj=ifi=jc0RNFinRCRingiNjNijiMj=0R
29 28 rexlimdva MBaseAcBaseRiNjNiMj=ifi=jc0RNFinRCRingiNjNijiMj=0R
30 29 imp MBaseAcBaseRiNjNiMj=ifi=jc0RNFinRCRingiNjNijiMj=0R
31 20 30 sylbi MmBaseA|cBaseRiNjNimj=ifi=jc0RNFinRCRingiNjNijiMj=0R
32 31 7 eleq2s MDNFinRCRingiNjNijiMj=0R
33 32 3ad2ant1 MDINnNnMn=ENFinRCRingiNjNijiMj=0R
34 33 impcom NFinRCRingMDINnNnMn=EiNjNijiMj=0R
35 eqid BaseA=BaseA
36 eqid 0R=0R
37 1 2 3 8 35 4 36 5 9 chpdmat NFinRCRingMBaseAiNjNijiMj=0RCM=GkNX-˙SkMk
38 10 11 15 34 37 syl31anc NFinRCRingMDINnNnMn=ECM=GkNX-˙SkMk
39 id n=kn=k
40 39 39 oveq12d n=knMn=kMk
41 40 eqeq1d n=knMn=EkMk=E
42 41 rspccv nNnMn=EkNkMk=E
43 42 3ad2ant3 MDINnNnMn=EkNkMk=E
44 43 adantl NFinRCRingMDINnNnMn=EkNkMk=E
45 44 imp NFinRCRingMDINnNnMn=EkNkMk=E
46 45 fveq2d NFinRCRingMDINnNnMn=EkNSkMk=SE
47 46 oveq2d NFinRCRingMDINnNnMn=EkNX-˙SkMk=X-˙SE
48 47 mpteq2dva NFinRCRingMDINnNnMn=EkNX-˙SkMk=kNX-˙SE
49 48 oveq2d NFinRCRingMDINnNnMn=EGkNX-˙SkMk=GkNX-˙SE
50 2 ply1crng RCRingPCRing
51 5 crngmgp PCRingGCMnd
52 cmnmnd GCMndGMnd
53 50 51 52 3syl RCRingGMnd
54 53 ad2antlr NFinRCRingMDINnNnMn=EGMnd
55 crngring RCRingRRing
56 2 ply1ring RRingPRing
57 55 56 syl RCRingPRing
58 ringgrp PRingPGrp
59 57 58 syl RCRingPGrp
60 59 ad2antlr NFinRCRingMDINnNnMn=EPGrp
61 eqid BaseP=BaseP
62 4 2 61 vr1cl RRingXBaseP
63 55 62 syl RCRingXBaseP
64 63 ad2antlr NFinRCRingMDINnNnMn=EXBaseP
65 simpr MDNFinRCRingININ
66 eqid ScalarP=ScalarP
67 57 ad2antll MDNFinRCRingPRing
68 67 adantr MDNFinRCRingINPRing
69 2 ply1lmod RRingPLMod
70 55 69 syl RCRingPLMod
71 70 ad2antll MDNFinRCRingPLMod
72 71 adantr MDNFinRCRingINPLMod
73 eqid BaseScalarP=BaseScalarP
74 8 66 68 72 73 61 asclf MDNFinRCRingINS:BaseScalarPBaseP
75 13 adantr MDNFinRCRingMBaseA
76 75 adantr MDNFinRCRingINMBaseA
77 eqid BaseR=BaseR
78 3 77 matecl ININMBaseAIMIBaseR
79 65 65 76 78 syl3anc MDNFinRCRingINIMIBaseR
80 2 ply1sca RCRingR=ScalarP
81 80 ad2antll MDNFinRCRingR=ScalarP
82 81 adantr MDNFinRCRingINR=ScalarP
83 82 eqcomd MDNFinRCRingINScalarP=R
84 83 fveq2d MDNFinRCRingINBaseScalarP=BaseR
85 79 84 eleqtrrd MDNFinRCRingINIMIBaseScalarP
86 74 85 ffvelcdmd MDNFinRCRingINSIMIBaseP
87 fveq2 E=IMISE=SIMI
88 87 eqcoms IMI=ESE=SIMI
89 88 eleq1d IMI=ESEBasePSIMIBaseP
90 86 89 syl5ibrcom MDNFinRCRingINIMI=ESEBaseP
91 90 adantr MDNFinRCRingINn=IIMI=ESEBaseP
92 id n=In=I
93 92 92 oveq12d n=InMn=IMI
94 93 eqeq1d n=InMn=EIMI=E
95 94 imbi1d n=InMn=ESEBasePIMI=ESEBaseP
96 95 adantl MDNFinRCRingINn=InMn=ESEBasePIMI=ESEBaseP
97 91 96 mpbird MDNFinRCRingINn=InMn=ESEBaseP
98 65 97 rspcimdv MDNFinRCRingINnNnMn=ESEBaseP
99 98 ex MDNFinRCRingINnNnMn=ESEBaseP
100 99 com23 MDNFinRCRingnNnMn=EINSEBaseP
101 100 ex MDNFinRCRingnNnMn=EINSEBaseP
102 101 com24 MDINnNnMn=ENFinRCRingSEBaseP
103 102 3imp MDINnNnMn=ENFinRCRingSEBaseP
104 103 impcom NFinRCRingMDINnNnMn=ESEBaseP
105 61 9 grpsubcl PGrpXBasePSEBasePX-˙SEBaseP
106 60 64 104 105 syl3anc NFinRCRingMDINnNnMn=EX-˙SEBaseP
107 5 61 mgpbas BaseP=BaseG
108 106 107 eleqtrdi NFinRCRingMDINnNnMn=EX-˙SEBaseG
109 eqid BaseG=BaseG
110 109 6 gsumconst GMndNFinX-˙SEBaseGGkNX-˙SE=N×˙X-˙SE
111 54 10 108 110 syl3anc NFinRCRingMDINnNnMn=EGkNX-˙SE=N×˙X-˙SE
112 38 49 111 3eqtrd NFinRCRingMDINnNnMn=ECM=N×˙X-˙SE