| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chp0mat.c |
|
| 2 |
|
chp0mat.p |
|
| 3 |
|
chp0mat.a |
|
| 4 |
|
chp0mat.x |
|
| 5 |
|
chp0mat.g |
|
| 6 |
|
chp0mat.m |
|
| 7 |
|
chpscmat.d |
|
| 8 |
|
chpscmat.s |
|
| 9 |
|
chpscmat.m |
|
| 10 |
|
simpll |
|
| 11 |
|
simplr |
|
| 12 |
|
elrabi |
|
| 13 |
12 7
|
eleq2s |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
14
|
adantl |
|
| 16 |
|
oveq |
|
| 17 |
16
|
eqeq1d |
|
| 18 |
17
|
2ralbidv |
|
| 19 |
18
|
rexbidv |
|
| 20 |
19
|
elrab |
|
| 21 |
|
ifnefalse |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
biimpcd |
|
| 24 |
23
|
a1i |
|
| 25 |
24
|
ralimdva |
|
| 26 |
25
|
ralimdva |
|
| 27 |
26
|
ex |
|
| 28 |
27
|
com23 |
|
| 29 |
28
|
rexlimdva |
|
| 30 |
29
|
imp |
|
| 31 |
20 30
|
sylbi |
|
| 32 |
31 7
|
eleq2s |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
33
|
impcom |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
1 2 3 8 35 4 36 5 9
|
chpdmat |
|
| 38 |
10 11 15 34 37
|
syl31anc |
|
| 39 |
|
id |
|
| 40 |
39 39
|
oveq12d |
|
| 41 |
40
|
eqeq1d |
|
| 42 |
41
|
rspccv |
|
| 43 |
42
|
3ad2ant3 |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
imp |
|
| 46 |
45
|
fveq2d |
|
| 47 |
46
|
oveq2d |
|
| 48 |
47
|
mpteq2dva |
|
| 49 |
48
|
oveq2d |
|
| 50 |
2
|
ply1crng |
|
| 51 |
5
|
crngmgp |
|
| 52 |
|
cmnmnd |
|
| 53 |
50 51 52
|
3syl |
|
| 54 |
53
|
ad2antlr |
|
| 55 |
|
crngring |
|
| 56 |
2
|
ply1ring |
|
| 57 |
55 56
|
syl |
|
| 58 |
|
ringgrp |
|
| 59 |
57 58
|
syl |
|
| 60 |
59
|
ad2antlr |
|
| 61 |
|
eqid |
|
| 62 |
4 2 61
|
vr1cl |
|
| 63 |
55 62
|
syl |
|
| 64 |
63
|
ad2antlr |
|
| 65 |
|
simpr |
|
| 66 |
|
eqid |
|
| 67 |
57
|
ad2antll |
|
| 68 |
67
|
adantr |
|
| 69 |
2
|
ply1lmod |
|
| 70 |
55 69
|
syl |
|
| 71 |
70
|
ad2antll |
|
| 72 |
71
|
adantr |
|
| 73 |
|
eqid |
|
| 74 |
8 66 68 72 73 61
|
asclf |
|
| 75 |
13
|
adantr |
|
| 76 |
75
|
adantr |
|
| 77 |
|
eqid |
|
| 78 |
3 77
|
matecl |
|
| 79 |
65 65 76 78
|
syl3anc |
|
| 80 |
2
|
ply1sca |
|
| 81 |
80
|
ad2antll |
|
| 82 |
81
|
adantr |
|
| 83 |
82
|
eqcomd |
|
| 84 |
83
|
fveq2d |
|
| 85 |
79 84
|
eleqtrrd |
|
| 86 |
74 85
|
ffvelcdmd |
|
| 87 |
|
fveq2 |
|
| 88 |
87
|
eqcoms |
|
| 89 |
88
|
eleq1d |
|
| 90 |
86 89
|
syl5ibrcom |
|
| 91 |
90
|
adantr |
|
| 92 |
|
id |
|
| 93 |
92 92
|
oveq12d |
|
| 94 |
93
|
eqeq1d |
|
| 95 |
94
|
imbi1d |
|
| 96 |
95
|
adantl |
|
| 97 |
91 96
|
mpbird |
|
| 98 |
65 97
|
rspcimdv |
|
| 99 |
98
|
ex |
|
| 100 |
99
|
com23 |
|
| 101 |
100
|
ex |
|
| 102 |
101
|
com24 |
|
| 103 |
102
|
3imp |
|
| 104 |
103
|
impcom |
|
| 105 |
61 9
|
grpsubcl |
|
| 106 |
60 64 104 105
|
syl3anc |
|
| 107 |
5 61
|
mgpbas |
|
| 108 |
106 107
|
eleqtrdi |
|
| 109 |
|
eqid |
|
| 110 |
109 6
|
gsumconst |
|
| 111 |
54 10 108 110
|
syl3anc |
|
| 112 |
38 49 111
|
3eqtrd |
|