Metamath Proof Explorer


Theorem chpscmat

Description: The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses chp0mat.c C = N CharPlyMat R
chp0mat.p P = Poly 1 R
chp0mat.a A = N Mat R
chp0mat.x X = var 1 R
chp0mat.g G = mulGrp P
chp0mat.m × ˙ = G
chpscmat.d D = m Base A | c Base R i N j N i m j = if i = j c 0 R
chpscmat.s S = algSc P
chpscmat.m - ˙ = - P
Assertion chpscmat N Fin R CRing M D I N n N n M n = E C M = N × ˙ X - ˙ S E

Proof

Step Hyp Ref Expression
1 chp0mat.c C = N CharPlyMat R
2 chp0mat.p P = Poly 1 R
3 chp0mat.a A = N Mat R
4 chp0mat.x X = var 1 R
5 chp0mat.g G = mulGrp P
6 chp0mat.m × ˙ = G
7 chpscmat.d D = m Base A | c Base R i N j N i m j = if i = j c 0 R
8 chpscmat.s S = algSc P
9 chpscmat.m - ˙ = - P
10 simpll N Fin R CRing M D I N n N n M n = E N Fin
11 simplr N Fin R CRing M D I N n N n M n = E R CRing
12 elrabi M m Base A | c Base R i N j N i m j = if i = j c 0 R M Base A
13 12 7 eleq2s M D M Base A
14 13 3ad2ant1 M D I N n N n M n = E M Base A
15 14 adantl N Fin R CRing M D I N n N n M n = E M Base A
16 oveq m = M i m j = i M j
17 16 eqeq1d m = M i m j = if i = j c 0 R i M j = if i = j c 0 R
18 17 2ralbidv m = M i N j N i m j = if i = j c 0 R i N j N i M j = if i = j c 0 R
19 18 rexbidv m = M c Base R i N j N i m j = if i = j c 0 R c Base R i N j N i M j = if i = j c 0 R
20 19 elrab M m Base A | c Base R i N j N i m j = if i = j c 0 R M Base A c Base R i N j N i M j = if i = j c 0 R
21 ifnefalse i j if i = j c 0 R = 0 R
22 21 eqeq2d i j i M j = if i = j c 0 R i M j = 0 R
23 22 biimpcd i M j = if i = j c 0 R i j i M j = 0 R
24 23 a1i M Base A c Base R N Fin R CRing i N j N i M j = if i = j c 0 R i j i M j = 0 R
25 24 ralimdva M Base A c Base R N Fin R CRing i N j N i M j = if i = j c 0 R j N i j i M j = 0 R
26 25 ralimdva M Base A c Base R N Fin R CRing i N j N i M j = if i = j c 0 R i N j N i j i M j = 0 R
27 26 ex M Base A c Base R N Fin R CRing i N j N i M j = if i = j c 0 R i N j N i j i M j = 0 R
28 27 com23 M Base A c Base R i N j N i M j = if i = j c 0 R N Fin R CRing i N j N i j i M j = 0 R
29 28 rexlimdva M Base A c Base R i N j N i M j = if i = j c 0 R N Fin R CRing i N j N i j i M j = 0 R
30 29 imp M Base A c Base R i N j N i M j = if i = j c 0 R N Fin R CRing i N j N i j i M j = 0 R
31 20 30 sylbi M m Base A | c Base R i N j N i m j = if i = j c 0 R N Fin R CRing i N j N i j i M j = 0 R
32 31 7 eleq2s M D N Fin R CRing i N j N i j i M j = 0 R
33 32 3ad2ant1 M D I N n N n M n = E N Fin R CRing i N j N i j i M j = 0 R
34 33 impcom N Fin R CRing M D I N n N n M n = E i N j N i j i M j = 0 R
35 eqid Base A = Base A
36 eqid 0 R = 0 R
37 1 2 3 8 35 4 36 5 9 chpdmat N Fin R CRing M Base A i N j N i j i M j = 0 R C M = G k N X - ˙ S k M k
38 10 11 15 34 37 syl31anc N Fin R CRing M D I N n N n M n = E C M = G k N X - ˙ S k M k
39 id n = k n = k
40 39 39 oveq12d n = k n M n = k M k
41 40 eqeq1d n = k n M n = E k M k = E
42 41 rspccv n N n M n = E k N k M k = E
43 42 3ad2ant3 M D I N n N n M n = E k N k M k = E
44 43 adantl N Fin R CRing M D I N n N n M n = E k N k M k = E
45 44 imp N Fin R CRing M D I N n N n M n = E k N k M k = E
46 45 fveq2d N Fin R CRing M D I N n N n M n = E k N S k M k = S E
47 46 oveq2d N Fin R CRing M D I N n N n M n = E k N X - ˙ S k M k = X - ˙ S E
48 47 mpteq2dva N Fin R CRing M D I N n N n M n = E k N X - ˙ S k M k = k N X - ˙ S E
49 48 oveq2d N Fin R CRing M D I N n N n M n = E G k N X - ˙ S k M k = G k N X - ˙ S E
50 2 ply1crng R CRing P CRing
51 5 crngmgp P CRing G CMnd
52 cmnmnd G CMnd G Mnd
53 50 51 52 3syl R CRing G Mnd
54 53 ad2antlr N Fin R CRing M D I N n N n M n = E G Mnd
55 crngring R CRing R Ring
56 2 ply1ring R Ring P Ring
57 55 56 syl R CRing P Ring
58 ringgrp P Ring P Grp
59 57 58 syl R CRing P Grp
60 59 ad2antlr N Fin R CRing M D I N n N n M n = E P Grp
61 eqid Base P = Base P
62 4 2 61 vr1cl R Ring X Base P
63 55 62 syl R CRing X Base P
64 63 ad2antlr N Fin R CRing M D I N n N n M n = E X Base P
65 simpr M D N Fin R CRing I N I N
66 eqid Scalar P = Scalar P
67 57 ad2antll M D N Fin R CRing P Ring
68 67 adantr M D N Fin R CRing I N P Ring
69 2 ply1lmod R Ring P LMod
70 55 69 syl R CRing P LMod
71 70 ad2antll M D N Fin R CRing P LMod
72 71 adantr M D N Fin R CRing I N P LMod
73 eqid Base Scalar P = Base Scalar P
74 8 66 68 72 73 61 asclf M D N Fin R CRing I N S : Base Scalar P Base P
75 13 adantr M D N Fin R CRing M Base A
76 75 adantr M D N Fin R CRing I N M Base A
77 eqid Base R = Base R
78 3 77 matecl I N I N M Base A I M I Base R
79 65 65 76 78 syl3anc M D N Fin R CRing I N I M I Base R
80 2 ply1sca R CRing R = Scalar P
81 80 ad2antll M D N Fin R CRing R = Scalar P
82 81 adantr M D N Fin R CRing I N R = Scalar P
83 82 eqcomd M D N Fin R CRing I N Scalar P = R
84 83 fveq2d M D N Fin R CRing I N Base Scalar P = Base R
85 79 84 eleqtrrd M D N Fin R CRing I N I M I Base Scalar P
86 74 85 ffvelrnd M D N Fin R CRing I N S I M I Base P
87 fveq2 E = I M I S E = S I M I
88 87 eqcoms I M I = E S E = S I M I
89 88 eleq1d I M I = E S E Base P S I M I Base P
90 86 89 syl5ibrcom M D N Fin R CRing I N I M I = E S E Base P
91 90 adantr M D N Fin R CRing I N n = I I M I = E S E Base P
92 id n = I n = I
93 92 92 oveq12d n = I n M n = I M I
94 93 eqeq1d n = I n M n = E I M I = E
95 94 imbi1d n = I n M n = E S E Base P I M I = E S E Base P
96 95 adantl M D N Fin R CRing I N n = I n M n = E S E Base P I M I = E S E Base P
97 91 96 mpbird M D N Fin R CRing I N n = I n M n = E S E Base P
98 65 97 rspcimdv M D N Fin R CRing I N n N n M n = E S E Base P
99 98 ex M D N Fin R CRing I N n N n M n = E S E Base P
100 99 com23 M D N Fin R CRing n N n M n = E I N S E Base P
101 100 ex M D N Fin R CRing n N n M n = E I N S E Base P
102 101 com24 M D I N n N n M n = E N Fin R CRing S E Base P
103 102 3imp M D I N n N n M n = E N Fin R CRing S E Base P
104 103 impcom N Fin R CRing M D I N n N n M n = E S E Base P
105 61 9 grpsubcl P Grp X Base P S E Base P X - ˙ S E Base P
106 60 64 104 105 syl3anc N Fin R CRing M D I N n N n M n = E X - ˙ S E Base P
107 5 61 mgpbas Base P = Base G
108 106 107 eleqtrdi N Fin R CRing M D I N n N n M n = E X - ˙ S E Base G
109 eqid Base G = Base G
110 109 6 gsumconst G Mnd N Fin X - ˙ S E Base G G k N X - ˙ S E = N × ˙ X - ˙ S E
111 54 10 108 110 syl3anc N Fin R CRing M D I N n N n M n = E G k N X - ˙ S E = N × ˙ X - ˙ S E
112 38 49 111 3eqtrd N Fin R CRing M D I N n N n M n = E C M = N × ˙ X - ˙ S E