| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnrefiisplem.a |
|
| 2 |
|
cnrefiisplem.n |
|
| 3 |
|
cnrefiisplem.b |
|
| 4 |
|
cnrefiisplem.c |
|
| 5 |
|
cnrefiisplem.d |
|
| 6 |
|
cnrefiisplem.x |
|
| 7 |
|
simpr |
|
| 8 |
1 2
|
absimnre |
|
| 9 |
8
|
adantr |
|
| 10 |
7 9
|
eqeltrd |
|
| 11 |
10
|
adantlr |
|
| 12 |
|
simpll |
|
| 13 |
5
|
eleq2i |
|
| 14 |
13
|
biimpi |
|
| 15 |
|
nelsn |
|
| 16 |
|
elunnel1 |
|
| 17 |
14 15 16
|
syl2an |
|
| 18 |
|
eliun |
|
| 19 |
17 18
|
sylib |
|
| 20 |
|
velsn |
|
| 21 |
20
|
rexbii |
|
| 22 |
19 21
|
sylib |
|
| 23 |
22
|
adantll |
|
| 24 |
|
simpr |
|
| 25 |
|
eldifi |
|
| 26 |
25
|
elin2d |
|
| 27 |
26
|
ad2antlr |
|
| 28 |
1
|
ad2antrr |
|
| 29 |
27 28
|
subcld |
|
| 30 |
|
eldifsni |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
27 28 31
|
subne0d |
|
| 33 |
29 32
|
absrpcld |
|
| 34 |
24 33
|
eqeltrd |
|
| 35 |
34
|
rexlimdva2 |
|
| 36 |
12 23 35
|
sylc |
|
| 37 |
11 36
|
pm2.61dane |
|
| 38 |
37
|
ssd |
|
| 39 |
|
xrltso |
|
| 40 |
39
|
a1i |
|
| 41 |
|
snfi |
|
| 42 |
41
|
a1i |
|
| 43 |
|
inss1 |
|
| 44 |
43
|
a1i |
|
| 45 |
44
|
ssdifssd |
|
| 46 |
3 45
|
ssfid |
|
| 47 |
|
snfi |
|
| 48 |
47
|
rgenw |
|
| 49 |
|
iunfi |
|
| 50 |
46 48 49
|
sylancl |
|
| 51 |
42 50
|
unfid |
|
| 52 |
5 51
|
eqeltrid |
|
| 53 |
|
fvex |
|
| 54 |
53
|
snid |
|
| 55 |
|
elun1 |
|
| 56 |
54 55
|
ax-mp |
|
| 57 |
56 5
|
eleqtrri |
|
| 58 |
57
|
a1i |
|
| 59 |
58
|
ne0d |
|
| 60 |
|
rpssxr |
|
| 61 |
38 60
|
sstrdi |
|
| 62 |
|
fiinfcl |
|
| 63 |
40 52 59 61 62
|
syl13anc |
|
| 64 |
6 63
|
eqeltrid |
|
| 65 |
38 64
|
sseldd |
|
| 66 |
38 63
|
sseldd |
|
| 67 |
66
|
rpred |
|
| 68 |
67
|
adantr |
|
| 69 |
1
|
imcld |
|
| 70 |
69
|
recnd |
|
| 71 |
70
|
adantr |
|
| 72 |
71
|
abscld |
|
| 73 |
|
recn |
|
| 74 |
73
|
adantl |
|
| 75 |
1
|
adantr |
|
| 76 |
74 75
|
subcld |
|
| 77 |
76
|
abscld |
|
| 78 |
61
|
adantr |
|
| 79 |
|
infxrlb |
|
| 80 |
78 57 79
|
sylancl |
|
| 81 |
|
simpr |
|
| 82 |
75 81
|
absimlere |
|
| 83 |
68 72 77 80 82
|
letrd |
|
| 84 |
6 83
|
eqbrtrid |
|
| 85 |
84
|
ad4ant14 |
|
| 86 |
4
|
eleq2i |
|
| 87 |
|
elunnel1 |
|
| 88 |
86 87
|
sylanb |
|
| 89 |
88
|
ad4ant24 |
|
| 90 |
61
|
ad2antrr |
|
| 91 |
|
simpr |
|
| 92 |
|
simpll |
|
| 93 |
91 92
|
elind |
|
| 94 |
|
nelsn |
|
| 95 |
94
|
ad2antlr |
|
| 96 |
93 95
|
eldifd |
|
| 97 |
|
fvex |
|
| 98 |
97
|
snid |
|
| 99 |
|
fvoveq1 |
|
| 100 |
99
|
sneqd |
|
| 101 |
100
|
eliuni |
|
| 102 |
96 98 101
|
sylancl |
|
| 103 |
100
|
cbviunv |
|
| 104 |
102 103
|
eleqtrdi |
|
| 105 |
|
elun2 |
|
| 106 |
104 105
|
syl |
|
| 107 |
106 5
|
eleqtrrdi |
|
| 108 |
107
|
adantll |
|
| 109 |
|
infxrlb |
|
| 110 |
90 108 109
|
syl2anc |
|
| 111 |
6 110
|
eqbrtrid |
|
| 112 |
111
|
adantllr |
|
| 113 |
89 112
|
syldan |
|
| 114 |
85 113
|
pm2.61dan |
|
| 115 |
114
|
ex |
|
| 116 |
115
|
ralrimiva |
|
| 117 |
|
breq1 |
|
| 118 |
117
|
imbi2d |
|
| 119 |
118
|
ralbidv |
|
| 120 |
119
|
rspcev |
|
| 121 |
65 116 120
|
syl2anc |
|