Metamath Proof Explorer


Theorem cnrefiisplem

Description: Lemma for cnrefiisp (some local definitions are used). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses cnrefiisplem.a φA
cnrefiisplem.n φ¬A
cnrefiisplem.b φBFin
cnrefiisplem.c C=B
cnrefiisplem.d D=AyBAyA
cnrefiisplem.x X=supD*<
Assertion cnrefiisplem φx+yCyyAxyA

Proof

Step Hyp Ref Expression
1 cnrefiisplem.a φA
2 cnrefiisplem.n φ¬A
3 cnrefiisplem.b φBFin
4 cnrefiisplem.c C=B
5 cnrefiisplem.d D=AyBAyA
6 cnrefiisplem.x X=supD*<
7 simpr φw=Aw=A
8 1 2 absimnre φA+
9 8 adantr φw=AA+
10 7 9 eqeltrd φw=Aw+
11 10 adantlr φwDw=Aw+
12 simpll φwDwAφ
13 5 eleq2i wDwAyBAyA
14 13 biimpi wDwAyBAyA
15 nelsn wA¬wA
16 elunnel1 wAyBAyA¬wAwyBAyA
17 14 15 16 syl2an wDwAwyBAyA
18 eliun wyBAyAyBAwyA
19 17 18 sylib wDwAyBAwyA
20 velsn wyAw=yA
21 20 rexbii yBAwyAyBAw=yA
22 19 21 sylib wDwAyBAw=yA
23 22 adantll φwDwAyBAw=yA
24 simpr φyBAw=yAw=yA
25 eldifi yBAyB
26 25 elin2d yBAy
27 26 ad2antlr φyBAw=yAy
28 1 ad2antrr φyBAw=yAA
29 27 28 subcld φyBAw=yAyA
30 eldifsni yBAyA
31 30 ad2antlr φyBAw=yAyA
32 27 28 31 subne0d φyBAw=yAyA0
33 29 32 absrpcld φyBAw=yAyA+
34 24 33 eqeltrd φyBAw=yAw+
35 34 rexlimdva2 φyBAw=yAw+
36 12 23 35 sylc φwDwAw+
37 11 36 pm2.61dane φwDw+
38 37 ssd φD+
39 xrltso <Or*
40 39 a1i φ<Or*
41 snfi AFin
42 41 a1i φAFin
43 inss1 BB
44 43 a1i φBB
45 44 ssdifssd φBAB
46 3 45 ssfid φBAFin
47 snfi yAFin
48 47 rgenw yBAyAFin
49 iunfi BAFinyBAyAFinyBAyAFin
50 46 48 49 sylancl φyBAyAFin
51 42 50 unfid φAyBAyAFin
52 5 51 eqeltrid φDFin
53 fvex AV
54 53 snid AA
55 elun1 AAAAyBAyA
56 54 55 ax-mp AAyBAyA
57 56 5 eleqtrri AD
58 57 a1i φAD
59 58 ne0d φD
60 rpssxr +*
61 38 60 sstrdi φD*
62 fiinfcl <Or*DFinDD*supD*<D
63 40 52 59 61 62 syl13anc φsupD*<D
64 6 63 eqeltrid φXD
65 38 64 sseldd φX+
66 38 63 sseldd φsupD*<+
67 66 rpred φsupD*<
68 67 adantr φysupD*<
69 1 imcld φA
70 69 recnd φA
71 70 adantr φyA
72 71 abscld φyA
73 recn yy
74 73 adantl φyy
75 1 adantr φyA
76 74 75 subcld φyyA
77 76 abscld φyyA
78 61 adantr φyD*
79 infxrlb D*ADsupD*<A
80 78 57 79 sylancl φysupD*<A
81 simpr φyy
82 75 81 absimlere φyAyA
83 68 72 77 80 82 letrd φysupD*<yA
84 6 83 eqbrtrid φyXyA
85 84 ad4ant14 φyCyyAyXyA
86 4 eleq2i yCyB
87 elunnel1 yB¬yyB
88 86 87 sylanb yC¬yyB
89 88 ad4ant24 φyCyyA¬yyB
90 61 ad2antrr φyyAyBD*
91 simpr yyAyByB
92 simpll yyAyBy
93 91 92 elind yyAyByB
94 nelsn yA¬yA
95 94 ad2antlr yyAyB¬yA
96 93 95 eldifd yyAyByBA
97 fvex yAV
98 97 snid yAyA
99 fvoveq1 w=ywA=yA
100 99 sneqd w=ywA=yA
101 100 eliuni yBAyAyAyAwBAwA
102 96 98 101 sylancl yyAyByAwBAwA
103 100 cbviunv wBAwA=yBAyA
104 102 103 eleqtrdi yyAyByAyBAyA
105 elun2 yAyBAyAyAAyBAyA
106 104 105 syl yyAyByAAyBAyA
107 106 5 eleqtrrdi yyAyByAD
108 107 adantll φyyAyByAD
109 infxrlb D*yADsupD*<yA
110 90 108 109 syl2anc φyyAyBsupD*<yA
111 6 110 eqbrtrid φyyAyBXyA
112 111 adantllr φyCyyAyBXyA
113 89 112 syldan φyCyyA¬yXyA
114 85 113 pm2.61dan φyCyyAXyA
115 114 ex φyCyyAXyA
116 115 ralrimiva φyCyyAXyA
117 breq1 x=XxyAXyA
118 117 imbi2d x=XyyAxyAyyAXyA
119 118 ralbidv x=XyCyyAxyAyCyyAXyA
120 119 rspcev X+yCyyAXyAx+yCyyAxyA
121 65 116 120 syl2anc φx+yCyyAxyA