| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coftr.1 |  | 
						
							| 2 |  | fdm |  | 
						
							| 3 |  | vex |  | 
						
							| 4 | 3 | dmex |  | 
						
							| 5 | 2 4 | eqeltrrdi |  | 
						
							| 6 |  | fveq2 |  | 
						
							| 7 | 6 | sseq1d |  | 
						
							| 8 | 7 | rabbidv |  | 
						
							| 9 | 8 | inteqd |  | 
						
							| 10 | 9 | cbvmptv |  | 
						
							| 11 | 1 10 | eqtri |  | 
						
							| 12 |  | mptexg |  | 
						
							| 13 | 11 12 | eqeltrid |  | 
						
							| 14 | 5 13 | syl |  | 
						
							| 15 | 14 | ad2antrl |  | 
						
							| 16 |  | ffn |  | 
						
							| 17 |  | smodm2 |  | 
						
							| 18 | 16 17 | sylan |  | 
						
							| 19 | 18 | 3adant3 |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | simpl3 |  | 
						
							| 22 |  | simprl |  | 
						
							| 23 |  | simpl1 |  | 
						
							| 24 |  | simpl2 |  | 
						
							| 25 |  | ffvelcdm |  | 
						
							| 26 | 25 | 3ad2antl3 |  | 
						
							| 27 |  | sseq1 |  | 
						
							| 28 | 27 | rexbidv |  | 
						
							| 29 | 28 | rspccv |  | 
						
							| 30 | 24 26 29 | sylc |  | 
						
							| 31 |  | ssrab2 |  | 
						
							| 32 |  | ordsson |  | 
						
							| 33 | 31 32 | sstrid |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 | 34 | sseq2d |  | 
						
							| 36 | 35 | rspcev |  | 
						
							| 37 |  | rabn0 |  | 
						
							| 38 | 36 37 | sylibr |  | 
						
							| 39 |  | oninton |  | 
						
							| 40 | 33 38 39 | syl2an |  | 
						
							| 41 |  | eloni |  | 
						
							| 42 | 40 41 | syl |  | 
						
							| 43 |  | simpl |  | 
						
							| 44 | 35 | intminss |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 |  | simprl |  | 
						
							| 47 |  | ordtr2 |  | 
						
							| 48 | 47 | imp |  | 
						
							| 49 | 42 43 45 46 48 | syl22anc |  | 
						
							| 50 | 49 | rexlimdvaa |  | 
						
							| 51 | 23 30 50 | sylc |  | 
						
							| 52 | 51 11 | fmptd |  | 
						
							| 53 | 20 21 22 52 | syl3anc |  | 
						
							| 54 |  | simprr |  | 
						
							| 55 |  | simpl1 |  | 
						
							| 56 |  | ffvelcdm |  | 
						
							| 57 |  | sseq1 |  | 
						
							| 58 | 57 | rexbidv |  | 
						
							| 59 | 58 | rspccv |  | 
						
							| 60 | 56 59 | syl5 |  | 
						
							| 61 | 60 | expdimp |  | 
						
							| 62 | 54 55 61 | syl2anc |  | 
						
							| 63 | 55 16 | syl |  | 
						
							| 64 |  | simpl2 |  | 
						
							| 65 |  | simpr |  | 
						
							| 66 | 65 51 | jca |  | 
						
							| 67 | 35 | elrab |  | 
						
							| 68 |  | sstr2 |  | 
						
							| 69 |  | smoword |  | 
						
							| 70 | 69 | biimprd |  | 
						
							| 71 | 68 70 | syl9r |  | 
						
							| 72 | 71 | expr |  | 
						
							| 73 | 72 | com23 |  | 
						
							| 74 | 73 | imp4b |  | 
						
							| 75 | 67 74 | biimtrid |  | 
						
							| 76 | 75 | ralrimiv |  | 
						
							| 77 |  | ssint |  | 
						
							| 78 | 76 77 | sylibr |  | 
						
							| 79 | 9 1 | fvmptg |  | 
						
							| 80 | 79 | sseq2d |  | 
						
							| 81 | 78 80 | syl5ibrcom |  | 
						
							| 82 | 66 81 | syl5 |  | 
						
							| 83 | 82 | ex |  | 
						
							| 84 | 83 | com23 |  | 
						
							| 85 | 84 | expdimp |  | 
						
							| 86 | 85 | reximdvai |  | 
						
							| 87 | 86 | ancoms |  | 
						
							| 88 | 87 | expr |  | 
						
							| 89 | 20 21 22 63 64 88 | syl32anc |  | 
						
							| 90 | 62 89 | mpdd |  | 
						
							| 91 | 90 | ralrimiv |  | 
						
							| 92 |  | feq1 |  | 
						
							| 93 |  | fveq1 |  | 
						
							| 94 | 93 | sseq2d |  | 
						
							| 95 | 94 | rexbidv |  | 
						
							| 96 | 95 | ralbidv |  | 
						
							| 97 | 92 96 | anbi12d |  | 
						
							| 98 | 97 | spcegv |  | 
						
							| 99 | 98 | 3impib |  | 
						
							| 100 | 15 53 91 99 | syl3anc |  | 
						
							| 101 | 100 | ex |  | 
						
							| 102 | 101 | exlimdv |  | 
						
							| 103 | 102 | exlimiv |  |