Metamath Proof Explorer


Theorem cvmlift2lem11

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 1-Jun-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
cvmlift2.m M=z01×01|KII×tIICnPCz
cvmlift2lem11.1 φUII
cvmlift2lem11.2 φVII
cvmlift2lem11.3 φYV
cvmlift2lem11.4 φZV
cvmlift2lem11.5 φwVKU×wII×tII𝑡U×wCnCKU×VII×tII𝑡U×VCnC
Assertion cvmlift2lem11 φU×YMU×ZM

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
8 cvmlift2.m M=z01×01|KII×tIICnPCz
9 cvmlift2lem11.1 φUII
10 cvmlift2lem11.2 φVII
11 cvmlift2lem11.3 φYV
12 cvmlift2lem11.4 φZV
13 cvmlift2lem11.5 φwVKU×wII×tII𝑡U×wCnCKU×VII×tII𝑡U×VCnC
14 9 adantr φU×YMUII
15 elssuni UIIUII
16 iiuni 01=II
17 15 16 sseqtrrdi UIIU01
18 14 17 syl φU×YMU01
19 elunii ZVVIIZII
20 19 16 eleqtrrdi ZVVIIZ01
21 12 10 20 syl2anc φZ01
22 21 adantr φU×YMZ01
23 22 snssd φU×YMZ01
24 xpss12 U01Z01U×Z01×01
25 18 23 24 syl2anc φU×YMU×Z01×01
26 11 adantr φU×YMYV
27 1 2 3 4 5 6 7 cvmlift2lem5 φK:01×01B
28 27 adantr φU×YMK:01×01B
29 10 adantr φU×YMVII
30 elssuni VIIVII
31 30 16 sseqtrrdi VIIV01
32 29 31 syl φU×YMV01
33 32 26 sseldd φU×YMY01
34 33 snssd φU×YMY01
35 xpss12 U01Y01U×Y01×01
36 18 34 35 syl2anc φU×YMU×Y01×01
37 28 36 fssresd φU×YMKU×Y:U×YB
38 36 adantr φU×YMzU×YU×Y01×01
39 simpr φU×YMzU×YzU×Y
40 simpr φU×YMU×YM
41 40 8 sseqtrdi φU×YMU×Yz01×01|KII×tIICnPCz
42 ssrab U×Yz01×01|KII×tIICnPCzU×Y01×01zU×YKII×tIICnPCz
43 42 simprbi U×Yz01×01|KII×tIICnPCzzU×YKII×tIICnPCz
44 41 43 syl φU×YMzU×YKII×tIICnPCz
45 44 r19.21bi φU×YMzU×YKII×tIICnPCz
46 iitopon IITopOn01
47 txtopon IITopOn01IITopOn01II×tIITopOn01×01
48 46 46 47 mp2an II×tIITopOn01×01
49 48 toponunii 01×01=II×tII
50 49 cnpresti U×Y01×01zU×YKII×tIICnPCzKU×YII×tII𝑡U×YCnPCz
51 38 39 45 50 syl3anc φU×YMzU×YKU×YII×tII𝑡U×YCnPCz
52 51 ralrimiva φU×YMzU×YKU×YII×tII𝑡U×YCnPCz
53 resttopon II×tIITopOn01×01U×Y01×01II×tII𝑡U×YTopOnU×Y
54 48 36 53 sylancr φU×YMII×tII𝑡U×YTopOnU×Y
55 cvmtop1 FCCovMapJCTop
56 2 55 syl φCTop
57 56 adantr φU×YMCTop
58 1 toptopon CTopCTopOnB
59 57 58 sylib φU×YMCTopOnB
60 cncnp II×tII𝑡U×YTopOnU×YCTopOnBKU×YII×tII𝑡U×YCnCKU×Y:U×YBzU×YKU×YII×tII𝑡U×YCnPCz
61 54 59 60 syl2anc φU×YMKU×YII×tII𝑡U×YCnCKU×Y:U×YBzU×YKU×YII×tII𝑡U×YCnPCz
62 37 52 61 mpbir2and φU×YMKU×YII×tII𝑡U×YCnC
63 sneq w=Yw=Y
64 63 xpeq2d w=YU×w=U×Y
65 64 reseq2d w=YKU×w=KU×Y
66 64 oveq2d w=YII×tII𝑡U×w=II×tII𝑡U×Y
67 66 oveq1d w=YII×tII𝑡U×wCnC=II×tII𝑡U×YCnC
68 65 67 eleq12d w=YKU×wII×tII𝑡U×wCnCKU×YII×tII𝑡U×YCnC
69 68 rspcev YVKU×YII×tII𝑡U×YCnCwVKU×wII×tII𝑡U×wCnC
70 26 62 69 syl2anc φU×YMwVKU×wII×tII𝑡U×wCnC
71 13 imp φwVKU×wII×tII𝑡U×wCnCKU×VII×tII𝑡U×VCnC
72 70 71 syldan φU×YMKU×VII×tII𝑡U×VCnC
73 72 adantr φU×YMzU×ZKU×VII×tII𝑡U×VCnC
74 12 adantr φU×YMZV
75 74 snssd φU×YMZV
76 xpss2 ZVU×ZU×V
77 75 76 syl φU×YMU×ZU×V
78 iitop IITop
79 78 78 txtopi II×tIITop
80 xpss12 U01V01U×V01×01
81 18 32 80 syl2anc φU×YMU×V01×01
82 49 restuni II×tIITopU×V01×01U×V=II×tII𝑡U×V
83 79 81 82 sylancr φU×YMU×V=II×tII𝑡U×V
84 77 83 sseqtrd φU×YMU×ZII×tII𝑡U×V
85 84 sselda φU×YMzU×ZzII×tII𝑡U×V
86 eqid II×tII𝑡U×V=II×tII𝑡U×V
87 86 cncnpi KU×VII×tII𝑡U×VCnCzII×tII𝑡U×VKU×VII×tII𝑡U×VCnPCz
88 73 85 87 syl2anc φU×YMzU×ZKU×VII×tII𝑡U×VCnPCz
89 79 a1i φU×YMzU×ZII×tIITop
90 81 adantr φU×YMzU×ZU×V01×01
91 78 a1i φU×YMIITop
92 txopn IITopIITopUIIVIIU×VII×tII
93 91 91 14 29 92 syl22anc φU×YMU×VII×tII
94 isopn3i II×tIITopU×VII×tIIintII×tIIU×V=U×V
95 79 93 94 sylancr φU×YMintII×tIIU×V=U×V
96 77 95 sseqtrrd φU×YMU×ZintII×tIIU×V
97 96 sselda φU×YMzU×ZzintII×tIIU×V
98 27 ad2antrr φU×YMzU×ZK:01×01B
99 49 1 cnprest II×tIITopU×V01×01zintII×tIIU×VK:01×01BKII×tIICnPCzKU×VII×tII𝑡U×VCnPCz
100 89 90 97 98 99 syl22anc φU×YMzU×ZKII×tIICnPCzKU×VII×tII𝑡U×VCnPCz
101 88 100 mpbird φU×YMzU×ZKII×tIICnPCz
102 25 101 ssrabdv φU×YMU×Zz01×01|KII×tIICnPCz
103 102 8 sseqtrrdi φU×YMU×ZM
104 103 ex φU×YMU×ZM