| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfufd2.b |
|
| 2 |
|
dfufd2.0 |
|
| 3 |
|
dfufd2.u |
|
| 4 |
|
dfufd2.p |
|
| 5 |
|
dfufd2.m |
|
| 6 |
|
dfufd2lem.1 |
|
| 7 |
|
dfufd2lem.2 |
|
| 8 |
|
dfufd2lem.3 |
|
| 9 |
|
dfufd2lem.4 |
|
| 10 |
|
dfufd2lem.5 |
|
| 11 |
|
simpr |
|
| 12 |
|
eqidd |
|
| 13 |
8
|
ad2antrr |
|
| 14 |
12 13
|
wrdfd |
|
| 15 |
|
simplr |
|
| 16 |
14 15
|
ffvelcdmd |
|
| 17 |
|
inelcm |
|
| 18 |
11 16 17
|
syl2anc |
|
| 19 |
|
id |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
eleq1d |
|
| 22 |
20
|
neeq1d |
|
| 23 |
21 22
|
3anbi23d |
|
| 24 |
|
fveq2 |
|
| 25 |
24
|
oveq2d |
|
| 26 |
|
fveq1 |
|
| 27 |
26
|
eleq1d |
|
| 28 |
25 27
|
rexeqbidv |
|
| 29 |
23 28
|
imbi12d |
|
| 30 |
|
oveq2 |
|
| 31 |
30
|
eleq1d |
|
| 32 |
30
|
neeq1d |
|
| 33 |
31 32
|
3anbi23d |
|
| 34 |
|
fveq2 |
|
| 35 |
34
|
oveq2d |
|
| 36 |
|
fveq1 |
|
| 37 |
36
|
eleq1d |
|
| 38 |
35 37
|
rexeqbidv |
|
| 39 |
33 38
|
imbi12d |
|
| 40 |
|
oveq2 |
|
| 41 |
40
|
eleq1d |
|
| 42 |
40
|
neeq1d |
|
| 43 |
41 42
|
3anbi23d |
|
| 44 |
|
fveq2 |
|
| 45 |
44
|
oveq2d |
|
| 46 |
|
fveq1 |
|
| 47 |
46
|
eleq1d |
|
| 48 |
45 47
|
rexeqbidv |
|
| 49 |
43 48
|
imbi12d |
|
| 50 |
|
oveq2 |
|
| 51 |
50
|
eleq1d |
|
| 52 |
50
|
neeq1d |
|
| 53 |
51 52
|
3anbi23d |
|
| 54 |
|
fveq2 |
|
| 55 |
54
|
oveq2d |
|
| 56 |
|
fveq1 |
|
| 57 |
56
|
eleq1d |
|
| 58 |
55 57
|
rexeqbidv |
|
| 59 |
53 58
|
imbi12d |
|
| 60 |
6
|
idomringd |
|
| 61 |
|
eqid |
|
| 62 |
3 61
|
1unit |
|
| 63 |
60 62
|
syl |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
5 61
|
ringidval |
|
| 66 |
65
|
gsum0 |
|
| 67 |
|
simplr |
|
| 68 |
66 67
|
eqeltrrid |
|
| 69 |
60
|
ad2antrr |
|
| 70 |
7
|
ad2antrr |
|
| 71 |
|
prmidlidl |
|
| 72 |
69 70 71
|
syl2anc |
|
| 73 |
1 3 64 68 69 72
|
lidlunitel |
|
| 74 |
|
eqid |
|
| 75 |
1 74
|
prmidlnr |
|
| 76 |
69 70 75
|
syl2anc |
|
| 77 |
73 76
|
pm2.21ddne |
|
| 78 |
77
|
3impa |
|
| 79 |
|
simpllr |
|
| 80 |
|
simp-4r |
|
| 81 |
6
|
idomdomd |
|
| 82 |
81
|
ad3antlr |
|
| 83 |
6
|
adantr |
|
| 84 |
|
simpr |
|
| 85 |
1 4 83 84
|
rprmcl |
|
| 86 |
4 2 83 84
|
rprmnz |
|
| 87 |
85 86
|
eldifsnd |
|
| 88 |
87
|
ex |
|
| 89 |
88
|
ssrdv |
|
| 90 |
|
sswrd |
|
| 91 |
89 90
|
syl |
|
| 92 |
91
|
ad3antlr |
|
| 93 |
|
simpll |
|
| 94 |
93
|
ad5ant13 |
|
| 95 |
92 94
|
sseldd |
|
| 96 |
1 5 2 82 95
|
domnprodn0 |
|
| 97 |
79 80 96
|
3jca |
|
| 98 |
|
lencl |
|
| 99 |
|
fzossfzop1 |
|
| 100 |
94 98 99
|
3syl |
|
| 101 |
|
ccatws1len |
|
| 102 |
94 101
|
syl |
|
| 103 |
102
|
oveq2d |
|
| 104 |
100 103
|
sseqtrrd |
|
| 105 |
94
|
ad2antrr |
|
| 106 |
|
simplr |
|
| 107 |
|
ccats1val1 |
|
| 108 |
105 106 107
|
syl2anc |
|
| 109 |
|
simpr |
|
| 110 |
108 109
|
eqeltrd |
|
| 111 |
110
|
ex |
|
| 112 |
111
|
reximdva |
|
| 113 |
|
ssrexv |
|
| 114 |
104 112 113
|
sylsyld |
|
| 115 |
97 114
|
embantd |
|
| 116 |
115
|
imp |
|
| 117 |
116
|
an62ds |
|
| 118 |
|
fveq2 |
|
| 119 |
118
|
eleq1d |
|
| 120 |
98
|
ad5antr |
|
| 121 |
|
fzonn0p1 |
|
| 122 |
120 121
|
syl |
|
| 123 |
101
|
ad5antr |
|
| 124 |
123
|
oveq2d |
|
| 125 |
122 124
|
eleqtrrd |
|
| 126 |
|
ccatws1ls |
|
| 127 |
126
|
ad4antr |
|
| 128 |
|
simp-4r |
|
| 129 |
127 128
|
eqeltrd |
|
| 130 |
119 125 129
|
rspcedvdw |
|
| 131 |
130
|
adantr |
|
| 132 |
131
|
an62ds |
|
| 133 |
6
|
idomcringd |
|
| 134 |
133
|
ad3antlr |
|
| 135 |
7
|
ad3antlr |
|
| 136 |
5 1
|
mgpbas |
|
| 137 |
5
|
crngmgp |
|
| 138 |
133 137
|
syl |
|
| 139 |
138
|
adantl |
|
| 140 |
|
ovexd |
|
| 141 |
|
eqidd |
|
| 142 |
|
simplll |
|
| 143 |
141 142
|
wrdfd |
|
| 144 |
85
|
ex |
|
| 145 |
144
|
ssrdv |
|
| 146 |
145
|
adantl |
|
| 147 |
143 146
|
fssd |
|
| 148 |
|
fvexd |
|
| 149 |
148 142
|
wrdfsupp |
|
| 150 |
136 65 139 140 147 149
|
gsumcl |
|
| 151 |
150
|
ad2antrr |
|
| 152 |
145
|
adantl |
|
| 153 |
|
simplr |
|
| 154 |
152 153
|
sseldd |
|
| 155 |
154
|
ad5ant13 |
|
| 156 |
138
|
cmnmndd |
|
| 157 |
156
|
adantl |
|
| 158 |
|
sswrd |
|
| 159 |
145 158
|
syl |
|
| 160 |
159
|
adantl |
|
| 161 |
160 93
|
sseldd |
|
| 162 |
5 74
|
mgpplusg |
|
| 163 |
136 162
|
gsumccatsn |
|
| 164 |
157 161 154 163
|
syl3anc |
|
| 165 |
164
|
ad5ant13 |
|
| 166 |
|
simplr |
|
| 167 |
165 166
|
eqeltrrd |
|
| 168 |
1 74
|
prmidlc |
|
| 169 |
134 135 151 155 167 168
|
syl23anc |
|
| 170 |
117 132 169
|
mpjaodan |
|
| 171 |
170
|
exp41 |
|
| 172 |
171
|
3impd |
|
| 173 |
172
|
ex |
|
| 174 |
29 39 49 59 78 173
|
wrdind |
|
| 175 |
174
|
imp |
|
| 176 |
8 19 9 10 175
|
syl13anc |
|
| 177 |
18 176
|
r19.29a |
|