Metamath Proof Explorer


Theorem dihatexv

Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014)

Ref Expression
Hypotheses dihatexv.b B=BaseK
dihatexv.a A=AtomsK
dihatexv.h H=LHypK
dihatexv.u U=DVecHKW
dihatexv.v V=BaseU
dihatexv.o 0˙=0U
dihatexv.n N=LSpanU
dihatexv.i I=DIsoHKW
dihatexv.k φKHLWH
dihatexv.q φQB
Assertion dihatexv φQAxV0˙IQ=Nx

Proof

Step Hyp Ref Expression
1 dihatexv.b B=BaseK
2 dihatexv.a A=AtomsK
3 dihatexv.h H=LHypK
4 dihatexv.u U=DVecHKW
5 dihatexv.v V=BaseU
6 dihatexv.o 0˙=0U
7 dihatexv.n N=LSpanU
8 dihatexv.i I=DIsoHKW
9 dihatexv.k φKHLWH
10 dihatexv.q φQB
11 9 ad2antrr φQAQKWKHLWH
12 simplr φQAQKWQA
13 simpr φQAQKWQKW
14 eqid K=K
15 eqid LTrnKW=LTrnKW
16 eqid fLTrnKWIB=fLTrnKWIB
17 1 14 2 3 15 16 4 8 7 dih1dimb2 KHLWHQAQKWgLTrnKWgIBIQ=NgfLTrnKWIB
18 11 12 13 17 syl12anc φQAQKWgLTrnKWgIBIQ=NgfLTrnKWIB
19 9 ad3antrrr φQAQKWgLTrnKWKHLWH
20 simpr φQAQKWgLTrnKWgLTrnKW
21 eqid TEndoKW=TEndoKW
22 1 3 15 21 16 tendo0cl KHLWHfLTrnKWIBTEndoKW
23 19 22 syl φQAQKWgLTrnKWfLTrnKWIBTEndoKW
24 3 15 21 4 5 dvhelvbasei KHLWHgLTrnKWfLTrnKWIBTEndoKWgfLTrnKWIBV
25 19 20 23 24 syl12anc φQAQKWgLTrnKWgfLTrnKWIBV
26 sneq x=gfLTrnKWIBx=gfLTrnKWIB
27 26 fveq2d x=gfLTrnKWIBNx=NgfLTrnKWIB
28 27 rspceeqv gfLTrnKWIBVIQ=NgfLTrnKWIBxVIQ=Nx
29 25 28 sylan φQAQKWgLTrnKWIQ=NgfLTrnKWIBxVIQ=Nx
30 29 ex φQAQKWgLTrnKWIQ=NgfLTrnKWIBxVIQ=Nx
31 30 adantld φQAQKWgLTrnKWgIBIQ=NgfLTrnKWIBxVIQ=Nx
32 31 rexlimdva φQAQKWgLTrnKWgIBIQ=NgfLTrnKWIBxVIQ=Nx
33 18 32 mpd φQAQKWxVIQ=Nx
34 9 ad2antrr φQA¬QKWKHLWH
35 eqid ocKW=ocKW
36 14 2 3 35 lhpocnel2 KHLWHocKWA¬ocKWKW
37 34 36 syl φQA¬QKWocKWA¬ocKWKW
38 simplr φQA¬QKWQA
39 simpr φQA¬QKW¬QKW
40 eqid ιfLTrnKW|focKW=Q=ιfLTrnKW|focKW=Q
41 14 2 3 15 40 ltrniotacl KHLWHocKWA¬ocKWKWQA¬QKWιfLTrnKW|focKW=QLTrnKW
42 34 37 38 39 41 syl112anc φQA¬QKWιfLTrnKW|focKW=QLTrnKW
43 3 15 21 tendoidcl KHLWHILTrnKWTEndoKW
44 34 43 syl φQA¬QKWILTrnKWTEndoKW
45 3 15 21 4 5 dvhelvbasei KHLWHιfLTrnKW|focKW=QLTrnKWILTrnKWTEndoKWιfLTrnKW|focKW=QILTrnKWV
46 34 42 44 45 syl12anc φQA¬QKWιfLTrnKW|focKW=QILTrnKWV
47 14 2 3 35 15 8 4 7 40 dih1dimc KHLWHQA¬QKWIQ=NιfLTrnKW|focKW=QILTrnKW
48 34 38 39 47 syl12anc φQA¬QKWIQ=NιfLTrnKW|focKW=QILTrnKW
49 sneq x=ιfLTrnKW|focKW=QILTrnKWx=ιfLTrnKW|focKW=QILTrnKW
50 49 fveq2d x=ιfLTrnKW|focKW=QILTrnKWNx=NιfLTrnKW|focKW=QILTrnKW
51 50 rspceeqv ιfLTrnKW|focKW=QILTrnKWVIQ=NιfLTrnKW|focKW=QILTrnKWxVIQ=Nx
52 46 48 51 syl2anc φQA¬QKWxVIQ=Nx
53 33 52 pm2.61dan φQAxVIQ=Nx
54 9 simpld φKHL
55 54 ad3antrrr φQAxVIQ=NxKHL
56 hlatl KHLKAtLat
57 55 56 syl φQAxVIQ=NxKAtLat
58 simpllr φQAxVIQ=NxQA
59 eqid 0.K=0.K
60 59 2 atn0 KAtLatQAQ0.K
61 57 58 60 syl2anc φQAxVIQ=NxQ0.K
62 sneq x=0˙x=0˙
63 62 fveq2d x=0˙Nx=N0˙
64 63 3ad2ant3 φQAxVIQ=Nxx=0˙Nx=N0˙
65 simp1ll φQAxVIQ=Nxx=0˙φ
66 3 4 9 dvhlmod φULMod
67 6 7 lspsn0 ULModN0˙=0˙
68 65 66 67 3syl φQAxVIQ=Nxx=0˙N0˙=0˙
69 64 68 eqtrd φQAxVIQ=Nxx=0˙Nx=0˙
70 simp2 φQAxVIQ=Nxx=0˙IQ=Nx
71 59 3 8 4 6 dih0 KHLWHI0.K=0˙
72 65 9 71 3syl φQAxVIQ=Nxx=0˙I0.K=0˙
73 69 70 72 3eqtr4d φQAxVIQ=Nxx=0˙IQ=I0.K
74 65 9 syl φQAxVIQ=Nxx=0˙KHLWH
75 65 10 syl φQAxVIQ=Nxx=0˙QB
76 65 54 syl φQAxVIQ=Nxx=0˙KHL
77 hlop KHLKOP
78 1 59 op0cl KOP0.KB
79 76 77 78 3syl φQAxVIQ=Nxx=0˙0.KB
80 1 3 8 dih11 KHLWHQB0.KBIQ=I0.KQ=0.K
81 74 75 79 80 syl3anc φQAxVIQ=Nxx=0˙IQ=I0.KQ=0.K
82 73 81 mpbid φQAxVIQ=Nxx=0˙Q=0.K
83 82 3expia φQAxVIQ=Nxx=0˙Q=0.K
84 83 necon3d φQAxVIQ=NxQ0.Kx0˙
85 61 84 mpd φQAxVIQ=Nxx0˙
86 85 ex φQAxVIQ=Nxx0˙
87 86 ancrd φQAxVIQ=Nxx0˙IQ=Nx
88 87 reximdva φQAxVIQ=NxxVx0˙IQ=Nx
89 53 88 mpd φQAxVx0˙IQ=Nx
90 89 ex φQAxVx0˙IQ=Nx
91 9 ad2antrr φxVx0˙IQ=NxKHLWH
92 10 ad2antrr φxVx0˙IQ=NxQB
93 1 3 8 dihcnvid1 KHLWHQBI-1IQ=Q
94 91 92 93 syl2anc φxVx0˙IQ=NxI-1IQ=Q
95 fveq2 IQ=NxI-1IQ=I-1Nx
96 95 ad2antll φxVx0˙IQ=NxI-1IQ=I-1Nx
97 94 96 eqtr3d φxVx0˙IQ=NxQ=I-1Nx
98 66 ad2antrr φxVx0˙IQ=NxULMod
99 simplr φxVx0˙IQ=NxxV
100 simprl φxVx0˙IQ=Nxx0˙
101 eqid LSAtomsU=LSAtomsU
102 5 7 6 101 lsatlspsn2 ULModxVx0˙NxLSAtomsU
103 98 99 100 102 syl3anc φxVx0˙IQ=NxNxLSAtomsU
104 2 3 4 8 101 dihlatat KHLWHNxLSAtomsUI-1NxA
105 91 103 104 syl2anc φxVx0˙IQ=NxI-1NxA
106 97 105 eqeltrd φxVx0˙IQ=NxQA
107 106 ex φxVx0˙IQ=NxQA
108 107 rexlimdva φxVx0˙IQ=NxQA
109 90 108 impbid φQAxVx0˙IQ=Nx
110 rexdifsn xV0˙IQ=NxxVx0˙IQ=Nx
111 109 110 bitr4di φQAxV0˙IQ=Nx