Step |
Hyp |
Ref |
Expression |
1 |
|
dihatexv.b |
|
2 |
|
dihatexv.a |
|
3 |
|
dihatexv.h |
|
4 |
|
dihatexv.u |
|
5 |
|
dihatexv.v |
|
6 |
|
dihatexv.o |
|
7 |
|
dihatexv.n |
|
8 |
|
dihatexv.i |
|
9 |
|
dihatexv.k |
|
10 |
|
dihatexv.q |
|
11 |
9
|
ad2antrr |
|
12 |
|
simplr |
|
13 |
|
simpr |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
1 14 2 3 15 16 4 8 7
|
dih1dimb2 |
|
18 |
11 12 13 17
|
syl12anc |
|
19 |
9
|
ad3antrrr |
|
20 |
|
simpr |
|
21 |
|
eqid |
|
22 |
1 3 15 21 16
|
tendo0cl |
|
23 |
19 22
|
syl |
|
24 |
3 15 21 4 5
|
dvhelvbasei |
|
25 |
19 20 23 24
|
syl12anc |
|
26 |
|
sneq |
|
27 |
26
|
fveq2d |
|
28 |
27
|
rspceeqv |
|
29 |
25 28
|
sylan |
|
30 |
29
|
ex |
|
31 |
30
|
adantld |
|
32 |
31
|
rexlimdva |
|
33 |
18 32
|
mpd |
|
34 |
9
|
ad2antrr |
|
35 |
|
eqid |
|
36 |
14 2 3 35
|
lhpocnel2 |
|
37 |
34 36
|
syl |
|
38 |
|
simplr |
|
39 |
|
simpr |
|
40 |
|
eqid |
|
41 |
14 2 3 15 40
|
ltrniotacl |
|
42 |
34 37 38 39 41
|
syl112anc |
|
43 |
3 15 21
|
tendoidcl |
|
44 |
34 43
|
syl |
|
45 |
3 15 21 4 5
|
dvhelvbasei |
|
46 |
34 42 44 45
|
syl12anc |
|
47 |
14 2 3 35 15 8 4 7 40
|
dih1dimc |
|
48 |
34 38 39 47
|
syl12anc |
|
49 |
|
sneq |
|
50 |
49
|
fveq2d |
|
51 |
50
|
rspceeqv |
|
52 |
46 48 51
|
syl2anc |
|
53 |
33 52
|
pm2.61dan |
|
54 |
9
|
simpld |
|
55 |
54
|
ad3antrrr |
|
56 |
|
hlatl |
|
57 |
55 56
|
syl |
|
58 |
|
simpllr |
|
59 |
|
eqid |
|
60 |
59 2
|
atn0 |
|
61 |
57 58 60
|
syl2anc |
|
62 |
|
sneq |
|
63 |
62
|
fveq2d |
|
64 |
63
|
3ad2ant3 |
|
65 |
|
simp1ll |
|
66 |
3 4 9
|
dvhlmod |
|
67 |
6 7
|
lspsn0 |
|
68 |
65 66 67
|
3syl |
|
69 |
64 68
|
eqtrd |
|
70 |
|
simp2 |
|
71 |
59 3 8 4 6
|
dih0 |
|
72 |
65 9 71
|
3syl |
|
73 |
69 70 72
|
3eqtr4d |
|
74 |
65 9
|
syl |
|
75 |
65 10
|
syl |
|
76 |
65 54
|
syl |
|
77 |
|
hlop |
|
78 |
1 59
|
op0cl |
|
79 |
76 77 78
|
3syl |
|
80 |
1 3 8
|
dih11 |
|
81 |
74 75 79 80
|
syl3anc |
|
82 |
73 81
|
mpbid |
|
83 |
82
|
3expia |
|
84 |
83
|
necon3d |
|
85 |
61 84
|
mpd |
|
86 |
85
|
ex |
|
87 |
86
|
ancrd |
|
88 |
87
|
reximdva |
|
89 |
53 88
|
mpd |
|
90 |
89
|
ex |
|
91 |
9
|
ad2antrr |
|
92 |
10
|
ad2antrr |
|
93 |
1 3 8
|
dihcnvid1 |
|
94 |
91 92 93
|
syl2anc |
|
95 |
|
fveq2 |
|
96 |
95
|
ad2antll |
|
97 |
94 96
|
eqtr3d |
|
98 |
66
|
ad2antrr |
|
99 |
|
simplr |
|
100 |
|
simprl |
|
101 |
|
eqid |
|
102 |
5 7 6 101
|
lsatlspsn2 |
|
103 |
98 99 100 102
|
syl3anc |
|
104 |
2 3 4 8 101
|
dihlatat |
|
105 |
91 103 104
|
syl2anc |
|
106 |
97 105
|
eqeltrd |
|
107 |
106
|
ex |
|
108 |
107
|
rexlimdva |
|
109 |
90 108
|
impbid |
|
110 |
|
rexdifsn |
|
111 |
109 110
|
bitr4di |
|