Metamath Proof Explorer


Theorem dihord6apre

Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord6apre.b B=BaseK
dihord6apre.l ˙=K
dihord6apre.a A=AtomsK
dihord6apre.h H=LHypK
dihord6apre.p P=ocKW
dihord6apre.o O=hTIB
dihord6apre.t T=LTrnKW
dihord6apre.e E=TEndoKW
dihord6apre.i I=DIsoHKW
dihord6apre.u U=DVecHKW
dihord6apre.s ˙=LSSumU
dihord6apre.g G=ιhT|hP=q
Assertion dihord6apre KHLWHXB¬X˙WYBY˙WIXIYX˙Y

Proof

Step Hyp Ref Expression
1 dihord6apre.b B=BaseK
2 dihord6apre.l ˙=K
3 dihord6apre.a A=AtomsK
4 dihord6apre.h H=LHypK
5 dihord6apre.p P=ocKW
6 dihord6apre.o O=hTIB
7 dihord6apre.t T=LTrnKW
8 dihord6apre.e E=TEndoKW
9 dihord6apre.i I=DIsoHKW
10 dihord6apre.u U=DVecHKW
11 dihord6apre.s ˙=LSSumU
12 dihord6apre.g G=ιhT|hP=q
13 1 4 7 8 6 tendo1ne0 KHLWHITO
14 13 3ad2ant1 KHLWHXB¬X˙WYBY˙WITO
15 14 neneqd KHLWHXB¬X˙WYBY˙W¬IT=O
16 eqid joinK=joinK
17 eqid meetK=meetK
18 1 2 16 17 3 4 lhpmcvr2 KHLWHXB¬X˙WqA¬q˙WqjoinKXmeetKW=X
19 18 3adant3 KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=X
20 simpl1 KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XKHLWH
21 simpl2 KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XXB¬X˙W
22 simpr KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XqA¬q˙WqjoinKXmeetKW=X
23 eqid DIsoBKW=DIsoBKW
24 eqid DIsoCKW=DIsoCKW
25 1 2 16 17 3 4 9 23 24 10 11 dihvalcq KHLWHXB¬X˙WqA¬q˙WqjoinKXmeetKW=XIX=DIsoCKWq˙DIsoBKWXmeetKW
26 20 21 22 25 syl3anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XIX=DIsoCKWq˙DIsoBKWXmeetKW
27 simpl3 KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XYBY˙W
28 1 2 4 9 23 dihvalb KHLWHYBY˙WIY=DIsoBKWY
29 20 27 28 syl2anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XIY=DIsoBKWY
30 26 29 sseq12d KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XIXIYDIsoCKWq˙DIsoBKWXmeetKWDIsoBKWY
31 4 10 20 dvhlmod KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XULMod
32 eqid LSubSpU=LSubSpU
33 32 lsssssubg ULModLSubSpUSubGrpU
34 31 33 syl KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XLSubSpUSubGrpU
35 simprl KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XqA¬q˙W
36 2 3 4 10 24 32 diclss KHLWHqA¬q˙WDIsoCKWqLSubSpU
37 20 35 36 syl2anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoCKWqLSubSpU
38 34 37 sseldd KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoCKWqSubGrpU
39 simpl1l KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XKHL
40 39 hllatd KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XKLat
41 simpl2l KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XXB
42 simpl1r KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XWH
43 1 4 lhpbase WHWB
44 42 43 syl KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XWB
45 1 17 latmcl KLatXBWBXmeetKWB
46 40 41 44 45 syl3anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XXmeetKWB
47 1 2 17 latmle2 KLatXBWBXmeetKW˙W
48 40 41 44 47 syl3anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XXmeetKW˙W
49 1 2 4 10 23 32 diblss KHLWHXmeetKWBXmeetKW˙WDIsoBKWXmeetKWLSubSpU
50 20 46 48 49 syl12anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoBKWXmeetKWLSubSpU
51 34 50 sseldd KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoBKWXmeetKWSubGrpU
52 11 lsmub1 DIsoCKWqSubGrpUDIsoBKWXmeetKWSubGrpUDIsoCKWqDIsoCKWq˙DIsoBKWXmeetKW
53 38 51 52 syl2anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoCKWqDIsoCKWq˙DIsoBKWXmeetKW
54 sstr DIsoCKWqDIsoCKWq˙DIsoBKWXmeetKWDIsoCKWq˙DIsoBKWXmeetKWDIsoBKWYDIsoCKWqDIsoBKWY
55 eqidd KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XITG=ITG
56 4 7 8 tendoidcl KHLWHITE
57 20 56 syl KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XITE
58 fvex ITGV
59 7 fvexi TV
60 resiexg TVITV
61 59 60 ax-mp ITV
62 2 3 4 5 7 8 24 12 58 61 dicopelval2 KHLWHqA¬q˙WITGITDIsoCKWqITG=ITGITE
63 20 35 62 syl2anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XITGITDIsoCKWqITG=ITGITE
64 55 57 63 mpbir2and KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XITGITDIsoCKWq
65 ssel2 DIsoCKWqDIsoBKWYITGITDIsoCKWqITGITDIsoBKWY
66 eqid DIsoAKW=DIsoAKW
67 1 2 4 7 6 66 23 dibopelval2 KHLWHYBY˙WITGITDIsoBKWYITGDIsoAKWYIT=O
68 20 27 67 syl2anc KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XITGITDIsoBKWYITGDIsoAKWYIT=O
69 simpr ITGDIsoAKWYIT=OIT=O
70 68 69 syl6bi KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XITGITDIsoBKWYIT=O
71 65 70 syl5 KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoCKWqDIsoBKWYITGITDIsoCKWqIT=O
72 64 71 mpan2d KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoCKWqDIsoBKWYIT=O
73 54 72 syl5 KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoCKWqDIsoCKWq˙DIsoBKWXmeetKWDIsoCKWq˙DIsoBKWXmeetKWDIsoBKWYIT=O
74 53 73 mpand KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XDIsoCKWq˙DIsoBKWXmeetKWDIsoBKWYIT=O
75 30 74 sylbid KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XIXIYIT=O
76 75 exp44 KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XIXIYIT=O
77 76 imp4a KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XIXIYIT=O
78 77 rexlimdv KHLWHXB¬X˙WYBY˙WqA¬q˙WqjoinKXmeetKW=XIXIYIT=O
79 19 78 mpd KHLWHXB¬X˙WYBY˙WIXIYIT=O
80 15 79 mtod KHLWHXB¬X˙WYBY˙W¬IXIY
81 80 pm2.21d KHLWHXB¬X˙WYBY˙WIXIYX˙Y
82 81 imp KHLWHXB¬X˙WYBY˙WIXIYX˙Y