Metamath Proof Explorer


Theorem dvfsumge

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Hypotheses dvfsumle.m φNM
dvfsumle.a φxMNA:MNcn
dvfsumle.v φxMNBV
dvfsumle.b φdxMNAdx=xMNB
dvfsumle.c x=MA=C
dvfsumle.d x=NA=D
dvfsumle.x φkM..^NX
dvfsumge.l φkM..^Nxkk+1BX
Assertion dvfsumge φDCkM..^NX

Proof

Step Hyp Ref Expression
1 dvfsumle.m φNM
2 dvfsumle.a φxMNA:MNcn
3 dvfsumle.v φxMNBV
4 dvfsumle.b φdxMNAdx=xMNB
5 dvfsumle.c x=MA=C
6 dvfsumle.d x=NA=D
7 dvfsumle.x φkM..^NX
8 dvfsumge.l φkM..^Nxkk+1BX
9 df-neg A=0A
10 9 mpteq2i xMNA=xMN0A
11 eqid TopOpenfld=TopOpenfld
12 11 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
13 0red φ0
14 eluzel2 NMM
15 1 14 syl φM
16 15 zred φM
17 eluzelz NMN
18 1 17 syl φN
19 18 zred φN
20 iccssre MNMN
21 16 19 20 syl2anc φMN
22 ax-resscn
23 21 22 sstrdi φMN
24 22 a1i φ
25 cncfmptc 0MNxMN0:MNcn
26 13 23 24 25 syl3anc φxMN0:MNcn
27 resubcl 0A0A
28 11 12 26 2 22 27 cncfmpt2ss φxMN0A:MNcn
29 10 28 eqeltrid φxMNA:MNcn
30 negex BV
31 30 a1i φxMNBV
32 reelprrecn
33 32 a1i φ
34 ioossicc MNMN
35 34 sseli xMNxMN
36 cncff xMNA:MNcnxMNA:MN
37 2 36 syl φxMNA:MN
38 37 fvmptelcdm φxMNA
39 35 38 sylan2 φxMNA
40 39 recnd φxMNA
41 33 40 3 4 dvmptneg φdxMNAdx=xMNB
42 5 negeqd x=MA=C
43 6 negeqd x=NA=D
44 7 renegcld φkM..^NX
45 16 adantr φkM..^NM
46 45 rexrd φkM..^NM*
47 elfzole1 kM..^NMk
48 47 adantl φkM..^NMk
49 iooss1 M*Mkkk+1Mk+1
50 46 48 49 syl2anc φkM..^Nkk+1Mk+1
51 19 adantr φkM..^NN
52 51 rexrd φkM..^NN*
53 fzofzp1 kM..^Nk+1MN
54 53 adantl φkM..^Nk+1MN
55 elfzle2 k+1MNk+1N
56 54 55 syl φkM..^Nk+1N
57 iooss2 N*k+1NMk+1MN
58 52 56 57 syl2anc φkM..^NMk+1MN
59 50 58 sstrd φkM..^Nkk+1MN
60 59 sselda φkM..^Nxkk+1xMN
61 38 adantlr φkM..^NxMNA
62 35 61 sylan2 φkM..^NxMNA
63 62 fmpttd φkM..^NxMNA:MN
64 ioossre MN
65 dvfre xMNA:MNMNdxMNAdx:domdxMNAdx
66 63 64 65 sylancl φkM..^NdxMNAdx:domdxMNAdx
67 4 adantr φkM..^NdxMNAdx=xMNB
68 67 dmeqd φkM..^NdomdxMNAdx=domxMNB
69 3 adantlr φkM..^NxMNBV
70 69 ralrimiva φkM..^NxMNBV
71 dmmptg xMNBVdomxMNB=MN
72 70 71 syl φkM..^NdomxMNB=MN
73 68 72 eqtrd φkM..^NdomdxMNAdx=MN
74 67 73 feq12d φkM..^NdxMNAdx:domdxMNAdxxMNB:MN
75 66 74 mpbid φkM..^NxMNB:MN
76 75 fvmptelcdm φkM..^NxMNB
77 60 76 syldan φkM..^Nxkk+1B
78 77 anasss φkM..^Nxkk+1B
79 7 adantrr φkM..^Nxkk+1X
80 78 79 lenegd φkM..^Nxkk+1BXXB
81 8 80 mpbid φkM..^Nxkk+1XB
82 1 29 31 41 42 43 44 81 dvfsumle φkM..^NX-D-C
83 fzofi M..^NFin
84 83 a1i φM..^NFin
85 7 recnd φkM..^NX
86 84 85 fsumneg φkM..^NX=kM..^NX
87 6 eleq1d x=NAD
88 eqid xMNA=xMNA
89 88 fmpt xMNAxMNA:MN
90 37 89 sylibr φxMNA
91 16 rexrd φM*
92 19 rexrd φN*
93 eluzle NMMN
94 1 93 syl φMN
95 ubicc2 M*N*MNNMN
96 91 92 94 95 syl3anc φNMN
97 87 90 96 rspcdva φD
98 97 recnd φD
99 5 eleq1d x=MAC
100 lbicc2 M*N*MNMMN
101 91 92 94 100 syl3anc φMMN
102 99 90 101 rspcdva φC
103 102 recnd φC
104 98 103 neg2subd φ-D-C=CD
105 98 103 negsubdi2d φDC=CD
106 104 105 eqtr4d φ-D-C=DC
107 82 86 106 3brtr3d φkM..^NXDC
108 97 102 resubcld φDC
109 84 7 fsumrecl φkM..^NX
110 108 109 lenegd φDCkM..^NXkM..^NXDC
111 107 110 mpbird φDCkM..^NX