Metamath Proof Explorer


Theorem dvfsumlem1

Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Hypotheses dvfsum.s S=T+∞
dvfsum.z Z=M
dvfsum.m φM
dvfsum.d φD
dvfsum.md φMD+1
dvfsum.t φT
dvfsum.a φxSA
dvfsum.b1 φxSBV
dvfsum.b2 φxZB
dvfsum.b3 φdxSAdx=xSB
dvfsum.c x=kB=C
dvfsum.u φU*
dvfsum.l φxSkSDxxkkUCB
dvfsum.h H=xSxxB+k=MxC-A
dvfsumlem1.1 φXS
dvfsumlem1.2 φYS
dvfsumlem1.3 φDX
dvfsumlem1.4 φXY
dvfsumlem1.5 φYU
dvfsumlem1.6 φYX+1
Assertion dvfsumlem1 φHY=YXY/xB-Y/xA+k=MXC

Proof

Step Hyp Ref Expression
1 dvfsum.s S=T+∞
2 dvfsum.z Z=M
3 dvfsum.m φM
4 dvfsum.d φD
5 dvfsum.md φMD+1
6 dvfsum.t φT
7 dvfsum.a φxSA
8 dvfsum.b1 φxSBV
9 dvfsum.b2 φxZB
10 dvfsum.b3 φdxSAdx=xSB
11 dvfsum.c x=kB=C
12 dvfsum.u φU*
13 dvfsum.l φxSkSDxxkkUCB
14 dvfsum.h H=xSxxB+k=MxC-A
15 dvfsumlem1.1 φXS
16 dvfsumlem1.2 φYS
17 dvfsumlem1.3 φDX
18 dvfsumlem1.4 φXY
19 dvfsumlem1.5 φYU
20 dvfsumlem1.6 φYX+1
21 ioossre T+∞
22 1 21 eqsstri S
23 22 16 sselid φY
24 22 15 sselid φX
25 24 flcld φX
26 reflcl XX
27 24 26 syl φX
28 flle XXX
29 24 28 syl φXX
30 27 24 23 29 18 letrd φXY
31 flbi YXY=XXYY<X+1
32 31 baibd YXXYY=XY<X+1
33 23 25 30 32 syl21anc φY=XY<X+1
34 33 biimpar φY<X+1Y=X
35 34 oveq2d φY<X+1YY=YX
36 35 oveq1d φY<X+1YYY/xB=YXY/xB
37 34 oveq2d φY<X+1MY=MX
38 37 sumeq1d φY<X+1k=MYC=k=MXC
39 38 oveq1d φY<X+1k=MYCY/xA=k=MXCY/xA
40 36 39 oveq12d φY<X+1YYY/xB+k=MYC-Y/xA=YXY/xB+k=MXC-Y/xA
41 simpr φY=X+1Y=X+1
42 24 adantr φY=X+1X
43 42 flcld φY=X+1X
44 43 peano2zd φY=X+1X+1
45 41 44 eqeltrd φY=X+1Y
46 flid YY=Y
47 45 46 syl φY=X+1Y=Y
48 47 41 eqtrd φY=X+1Y=X+1
49 48 oveq2d φY=X+1YY=YX+1
50 49 oveq1d φY=X+1YYY/xB=YX+1Y/xB
51 23 recnd φY
52 27 recnd φX
53 51 52 subcld φYX
54 1cnd φ1
55 22 a1i φS
56 55 7 8 10 dvmptrecl φxSB
57 56 recnd φxSB
58 57 ralrimiva φxSB
59 nfcsb1v _xY/xB
60 59 nfel1 xY/xB
61 csbeq1a x=YB=Y/xB
62 61 eleq1d x=YBY/xB
63 60 62 rspc YSxSBY/xB
64 16 58 63 sylc φY/xB
65 53 54 64 subdird φY-X-1Y/xB=YXY/xB1Y/xB
66 51 52 54 subsub4d φY-X-1=YX+1
67 66 oveq1d φY-X-1Y/xB=YX+1Y/xB
68 64 mullidd φ1Y/xB=Y/xB
69 68 oveq2d φYXY/xB1Y/xB=YXY/xBY/xB
70 65 67 69 3eqtr3d φYX+1Y/xB=YXY/xBY/xB
71 70 adantr φY=X+1YX+1Y/xB=YXY/xBY/xB
72 50 71 eqtrd φY=X+1YYY/xB=YXY/xBY/xB
73 25 peano2zd φX+1
74 3 zred φM
75 peano2rem MM1
76 74 75 syl φM1
77 1red φ1
78 74 77 4 lesubaddd φM1DMD+1
79 5 78 mpbird φM1D
80 76 4 24 79 17 letrd φM1X
81 peano2zm MM1
82 3 81 syl φM1
83 flge XM1M1XM1X
84 24 82 83 syl2anc φM1XM1X
85 80 84 mpbid φM1X
86 74 77 27 lesubaddd φM1XMX+1
87 85 86 mpbid φMX+1
88 eluz2 X+1MMX+1MX+1
89 3 73 87 88 syl3anbrc φX+1M
90 9 recnd φxZB
91 90 ralrimiva φxZB
92 elfzuz kMX+1kM
93 92 2 eleqtrrdi kMX+1kZ
94 11 eleq1d x=kBC
95 94 rspccva xZBkZC
96 91 93 95 syl2an φkMX+1C
97 eqvisset k=X+1X+1V
98 eqeq2 k=X+1x=kx=X+1
99 98 biimpar k=X+1x=X+1x=k
100 99 11 syl k=X+1x=X+1B=C
101 97 100 csbied k=X+1X+1/xB=C
102 101 eqcomd k=X+1C=X+1/xB
103 89 96 102 fsumm1 φk=MX+1C=k=MX+1-1C+X+1/xB
104 ax-1cn 1
105 pncan X1X+1-1=X
106 52 104 105 sylancl φX+1-1=X
107 106 oveq2d φMX+1-1=MX
108 107 sumeq1d φk=MX+1-1C=k=MXC
109 108 oveq1d φk=MX+1-1C+X+1/xB=k=MXC+X+1/xB
110 103 109 eqtrd φk=MX+1C=k=MXC+X+1/xB
111 110 adantr φY=X+1k=MX+1C=k=MXC+X+1/xB
112 48 oveq2d φY=X+1MY=MX+1
113 112 sumeq1d φY=X+1k=MYC=k=MX+1C
114 41 csbeq1d φY=X+1Y/xB=X+1/xB
115 114 oveq2d φY=X+1k=MXC+Y/xB=k=MXC+X+1/xB
116 111 113 115 3eqtr4d φY=X+1k=MYC=k=MXC+Y/xB
117 116 oveq1d φY=X+1k=MYCY/xA=k=MXC+Y/xB-Y/xA
118 fzfid φMXFin
119 elfzuz kMXkM
120 119 2 eleqtrrdi kMXkZ
121 91 120 95 syl2an φkMXC
122 118 121 fsumcl φk=MXC
123 7 recnd φxSA
124 123 ralrimiva φxSA
125 nfcsb1v _xY/xA
126 125 nfel1 xY/xA
127 csbeq1a x=YA=Y/xA
128 127 eleq1d x=YAY/xA
129 126 128 rspc YSxSAY/xA
130 16 124 129 sylc φY/xA
131 122 64 130 addsubd φk=MXC+Y/xB-Y/xA=k=MXC-Y/xA+Y/xB
132 131 adantr φY=X+1k=MXC+Y/xB-Y/xA=k=MXC-Y/xA+Y/xB
133 117 132 eqtrd φY=X+1k=MYCY/xA=k=MXC-Y/xA+Y/xB
134 72 133 oveq12d φY=X+1YYY/xB+k=MYC-Y/xA=YXY/xBY/xB+k=MXCY/xA+Y/xB
135 53 64 mulcld φYXY/xB
136 135 adantr φY=X+1YXY/xB
137 64 adantr φY=X+1Y/xB
138 122 130 subcld φk=MXCY/xA
139 138 adantr φY=X+1k=MXCY/xA
140 136 137 139 nppcan3d φY=X+1YXY/xBY/xB+k=MXCY/xA+Y/xB=YXY/xB+k=MXC-Y/xA
141 134 140 eqtrd φY=X+1YYY/xB+k=MYC-Y/xA=YXY/xB+k=MXC-Y/xA
142 peano2re XX+1
143 27 142 syl φX+1
144 23 143 leloed φYX+1Y<X+1Y=X+1
145 20 144 mpbid φY<X+1Y=X+1
146 40 141 145 mpjaodan φYYY/xB+k=MYC-Y/xA=YXY/xB+k=MXC-Y/xA
147 ovex YYY/xB+k=MYC-Y/xAV
148 nfcv _xY
149 nfcv _xYY
150 nfcv _x×
151 149 150 59 nfov _xYYY/xB
152 nfcv _x+
153 nfcv _xk=MYC
154 nfcv _x
155 153 154 125 nfov _xk=MYCY/xA
156 151 152 155 nfov _xYYY/xB+k=MYC-Y/xA
157 id x=Yx=Y
158 fveq2 x=Yx=Y
159 157 158 oveq12d x=Yxx=YY
160 159 61 oveq12d x=YxxB=YYY/xB
161 158 oveq2d x=YMx=MY
162 161 sumeq1d x=Yk=MxC=k=MYC
163 162 127 oveq12d x=Yk=MxCA=k=MYCY/xA
164 160 163 oveq12d x=YxxB+k=MxC-A=YYY/xB+k=MYC-Y/xA
165 148 156 164 14 fvmptf YSYYY/xB+k=MYC-Y/xAVHY=YYY/xB+k=MYC-Y/xA
166 16 147 165 sylancl φHY=YYY/xB+k=MYC-Y/xA
167 135 130 122 subadd23d φYXY/xB-Y/xA+k=MXC=YXY/xB+k=MXC-Y/xA
168 146 166 167 3eqtr4d φHY=YXY/xB-Y/xA+k=MXC