Metamath Proof Explorer


Theorem dvsinax

Description: Derivative exercise: the derivative with respect to y of sin(Ay), given a constant A . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dvsinax AdysinAydy=yAcosAy

Proof

Step Hyp Ref Expression
1 sinf sin:
2 1 a1i Asin:
3 mulcl AyAy
4 3 fmpttd AyAy:
5 fcompt sin:yAy:sinyAy=wsinyAyw
6 2 4 5 syl2anc AsinyAy=wsinyAyw
7 eqidd AwyAy=yAy
8 oveq2 y=wAy=Aw
9 8 adantl Awy=wAy=Aw
10 simpr Aww
11 mulcl AwAw
12 7 9 10 11 fvmptd AwyAyw=Aw
13 12 fveq2d AwsinyAyw=sinAw
14 13 mpteq2dva AwsinyAyw=wsinAw
15 oveq2 w=yAw=Ay
16 15 fveq2d w=ysinAw=sinAy
17 16 cbvmptv wsinAw=ysinAy
18 17 a1i AwsinAw=ysinAy
19 6 14 18 3eqtrrd AysinAy=sinyAy
20 19 oveq2d AdysinAydy=DsinyAy
21 cnelprrecn
22 21 a1i A
23 dvsin Dsin=cos
24 23 dmeqi domsin=domcos
25 cosf cos:
26 25 fdmi domcos=
27 24 26 eqtri domsin=
28 27 a1i Adomsin=
29 id y=wy=w
30 29 cbvmptv yy=ww
31 30 oveq2i ×A×fyy=×A×fww
32 31 a1i A×A×fyy=×A×fww
33 cnex V
34 33 a1i AV
35 snex AV
36 35 a1i AAV
37 34 36 xpexd A×AV
38 33 mptex wwV
39 38 a1i AwwV
40 offval3 ×AVwwV×A×fww=ydom×Adomww×Aywwy
41 37 39 40 syl2anc A×A×fww=ydom×Adomww×Aywwy
42 fconst6g A×A:
43 42 fdmd Adom×A=
44 eqid ww=ww
45 id ww
46 44 45 fmpti ww:
47 46 fdmi domww=
48 47 a1i Adomww=
49 43 48 ineq12d Adom×Adomww=
50 inidm =
51 50 a1i A=
52 49 51 eqtrd Adom×Adomww=
53 52 mpteq1d Aydom×Adomww×Aywwy=y×Aywwy
54 fvconst2g Ay×Ay=A
55 eqidd yww=ww
56 simpr yw=yw=y
57 id yy
58 55 56 57 57 fvmptd ywwy=y
59 58 adantl Aywwy=y
60 54 59 oveq12d Ay×Aywwy=Ay
61 60 mpteq2dva Ay×Aywwy=yAy
62 53 61 eqtrd Aydom×Adomww×Aywwy=yAy
63 32 41 62 3eqtrrd AyAy=×A×fyy
64 63 oveq2d AdyAydy=D×A×fyy
65 eqid yy=yy
66 65 57 fmpti yy:
67 66 a1i Ayy:
68 id AA
69 21 a1i
70 69 dvmptid dyydy=y1
71 70 mptru dyydy=y1
72 71 dmeqi domdyydy=domy1
73 ax-1cn 1
74 73 rgenw y1
75 eqid y1=y1
76 75 fmpt y1y1:
77 74 76 mpbi y1:
78 77 fdmi domy1=
79 72 78 eqtri domdyydy=
80 79 a1i Adomdyydy=
81 22 67 68 80 dvcmulf AD×A×fyy=×A×fdyydy
82 64 81 eqtrd AdyAydy=×A×fdyydy
83 82 dmeqd AdomdyAydy=dom×A×fdyydy
84 ovexd AdyydyV
85 offval3 ×AVdyydyV×A×fdyydy=wdom×Adomdyydy×Awdyydyw
86 37 84 85 syl2anc A×A×fdyydy=wdom×Adomdyydy×Awdyydyw
87 86 dmeqd Adom×A×fdyydy=domwdom×Adomdyydy×Awdyydyw
88 43 80 ineq12d Adom×Adomdyydy=
89 88 51 eqtrd Adom×Adomdyydy=
90 89 mpteq1d Awdom×Adomdyydy×Awdyydyw=w×Awdyydyw
91 90 dmeqd Adomwdom×Adomdyydy×Awdyydyw=domw×Awdyydyw
92 eqid w×Awdyydyw=w×Awdyydyw
93 fvconst2g Aw×Aw=A
94 71 fveq1i dyydyw=y1w
95 94 a1i wdyydyw=y1w
96 eqidd wy1=y1
97 eqidd wy=w1=1
98 73 a1i w1
99 96 97 45 98 fvmptd wy1w=1
100 95 99 eqtrd wdyydyw=1
101 100 adantl Awdyydyw=1
102 93 101 oveq12d Aw×Awdyydyw=A1
103 mulcl A1A1
104 73 103 mpan2 AA1
105 104 adantr AwA1
106 102 105 eqeltrd Aw×Awdyydyw
107 92 106 dmmptd Adomw×Awdyydyw=
108 91 107 eqtrd Adomwdom×Adomdyydy×Awdyydyw=
109 83 87 108 3eqtrd AdomdyAydy=
110 22 22 2 4 28 109 dvcof ADsinyAy=sinyAy×fdyAydy
111 23 a1i ADsin=cos
112 coscn cos:cn
113 112 a1i Acos:cn
114 111 113 eqeltrd Asin:cn
115 33 mptex yAyV
116 115 a1i AyAyV
117 coexg sin:cnyAyVsinyAyV
118 114 116 117 syl2anc AsinyAyV
119 ovexd AdyAydyV
120 offval3 sinyAyVdyAydyVsinyAy×fdyAydy=wdomsinyAydomdyAydysinyAywdyAydyw
121 118 119 120 syl2anc AsinyAy×fdyAydy=wdomsinyAydomdyAydysinyAywdyAydyw
122 4 frnd AranyAy
123 122 28 sseqtrrd AranyAydomsin
124 dmcosseq ranyAydomsindomsinyAy=domyAy
125 123 124 syl AdomsinyAy=domyAy
126 ovex AyV
127 eqid yAy=yAy
128 126 127 dmmpti domyAy=
129 128 a1i AdomyAy=
130 125 129 eqtrd AdomsinyAy=
131 130 109 ineq12d AdomsinyAydomdyAydy=
132 131 51 eqtrd AdomsinyAydomdyAydy=
133 132 mpteq1d AwdomsinyAydomdyAydysinyAywdyAydyw=wsinyAywdyAydyw
134 11 coscld AwcosAw
135 simpl AwA
136 134 135 mulcomd AwcosAwA=AcosAw
137 136 mpteq2dva AwcosAwA=wAcosAw
138 23 coeq1i sinyAy=cosyAy
139 138 a1i AwsinyAy=cosyAy
140 139 fveq1d AwsinyAyw=cosyAyw
141 4 ffund AFunyAy
142 141 adantr AwFunyAy
143 10 128 eleqtrrdi AwwdomyAy
144 fvco FunyAywdomyAycosyAyw=cosyAyw
145 142 143 144 syl2anc AwcosyAyw=cosyAyw
146 12 fveq2d AwcosyAyw=cosAw
147 140 145 146 3eqtrd AwsinyAyw=cosAw
148 simpl AyA
149 0cnd Ay0
150 22 68 dvmptc AdyAdy=y0
151 simpr Ayy
152 73 a1i Ay1
153 71 a1i Adyydy=y1
154 22 148 149 150 151 152 153 dvmptmul AdyAydy=y0y+1A
155 151 mul02d Ay0y=0
156 148 mullidd Ay1A=A
157 155 156 oveq12d Ay0y+1A=0+A
158 148 addlidd Ay0+A=A
159 157 158 eqtrd Ay0y+1A=A
160 159 mpteq2dva Ay0y+1A=yA
161 154 160 eqtrd AdyAydy=yA
162 161 adantr AwdyAydy=yA
163 eqidd Awy=wA=A
164 162 163 10 135 fvmptd AwdyAydyw=A
165 147 164 oveq12d AwsinyAywdyAydyw=cosAwA
166 165 mpteq2dva AwsinyAywdyAydyw=wcosAwA
167 8 fveq2d y=wcosAy=cosAw
168 167 oveq2d y=wAcosAy=AcosAw
169 168 cbvmptv yAcosAy=wAcosAw
170 169 a1i AyAcosAy=wAcosAw
171 137 166 170 3eqtr4d AwsinyAywdyAydyw=yAcosAy
172 121 133 171 3eqtrd AsinyAy×fdyAydy=yAcosAy
173 20 110 172 3eqtrd AdysinAydy=yAcosAy