Metamath Proof Explorer


Theorem eirrlem

Description: Lemma for eirr . (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses eirr.1 F=n01n!
eirr.2 φP
eirr.3 φQ
eirr.4 φe=PQ
Assertion eirrlem ¬φ

Proof

Step Hyp Ref Expression
1 eirr.1 F=n01n!
2 eirr.2 φP
3 eirr.3 φQ
4 eirr.4 φe=PQ
5 fzfid φ0QFin
6 elfznn0 k0Qk0
7 nn0z n0n
8 1exp n1n=1
9 7 8 syl n01n=1
10 9 oveq1d n01nn!=1n!
11 10 mpteq2ia n01nn!=n01n!
12 1 11 eqtr4i F=n01nn!
13 12 eftval k0Fk=1kk!
14 13 adantl φk0Fk=1kk!
15 ax-1cn 1
16 15 a1i φ1
17 eftcl 1k01kk!
18 16 17 sylan φk01kk!
19 14 18 eqeltrd φk0Fk
20 6 19 sylan2 φk0QFk
21 5 20 fsumcl φk=0QFk
22 nn0uz 0=0
23 eqid Q+1=Q+1
24 3 peano2nnd φQ+1
25 24 nnnn0d φQ+10
26 eqidd φk0Fk=Fk
27 fveq2 n=kn!=k!
28 27 oveq2d n=k1n!=1k!
29 ovex 1k!V
30 28 1 29 fvmpt k0Fk=1k!
31 30 adantl φk0Fk=1k!
32 faccl k0k!
33 32 adantl φk0k!
34 33 nnrpd φk0k!+
35 34 rpreccld φk01k!+
36 31 35 eqeltrd φk0Fk+
37 12 efcllem 1seq0+Fdom
38 16 37 syl φseq0+Fdom
39 22 23 25 26 36 38 isumrpcl φkQ+1Fk+
40 39 rpred φkQ+1Fk
41 40 recnd φkQ+1Fk
42 esum e=k01k!
43 30 sumeq2i k0Fk=k01k!
44 42 43 eqtr4i e=k0Fk
45 22 23 25 26 19 38 isumsplit φk0Fk=k=0Q+1-1Fk+kQ+1Fk
46 44 45 eqtrid φe=k=0Q+1-1Fk+kQ+1Fk
47 3 nncnd φQ
48 pncan Q1Q+1-1=Q
49 47 15 48 sylancl φQ+1-1=Q
50 49 oveq2d φ0Q+1-1=0Q
51 50 sumeq1d φk=0Q+1-1Fk=k=0QFk
52 51 oveq1d φk=0Q+1-1Fk+kQ+1Fk=k=0QFk+kQ+1Fk
53 46 52 eqtrd φe=k=0QFk+kQ+1Fk
54 21 41 53 mvrladdd φek=0QFk=kQ+1Fk
55 54 oveq2d φQ!ek=0QFk=Q!kQ+1Fk
56 3 nnnn0d φQ0
57 56 faccld φQ!
58 57 nncnd φQ!
59 ere e
60 59 recni e
61 60 a1i φe
62 58 61 21 subdid φQ!ek=0QFk=Q!eQ!k=0QFk
63 55 62 eqtr3d φQ!kQ+1Fk=Q!eQ!k=0QFk
64 4 oveq2d φQ!e=Q!PQ
65 2 zcnd φP
66 3 nnne0d φQ0
67 58 65 47 66 div12d φQ!PQ=PQ!Q
68 64 67 eqtrd φQ!e=PQ!Q
69 3 nnred φQ
70 69 leidd φQQ
71 facdiv Q0QQQQ!Q
72 56 3 70 71 syl3anc φQ!Q
73 72 nnzd φQ!Q
74 2 73 zmulcld φPQ!Q
75 68 74 eqeltrd φQ!e
76 5 58 20 fsummulc2 φQ!k=0QFk=k=0QQ!Fk
77 6 adantl φk0Qk0
78 77 30 syl φk0QFk=1k!
79 78 oveq2d φk0QQ!Fk=Q!1k!
80 58 adantr φk0QQ!
81 6 33 sylan2 φk0Qk!
82 81 nncnd φk0Qk!
83 facne0 k0k!0
84 77 83 syl φk0Qk!0
85 80 82 84 divrecd φk0QQ!k!=Q!1k!
86 79 85 eqtr4d φk0QQ!Fk=Q!k!
87 permnn k0QQ!k!
88 87 adantl φk0QQ!k!
89 86 88 eqeltrd φk0QQ!Fk
90 89 nnzd φk0QQ!Fk
91 5 90 fsumzcl φk=0QQ!Fk
92 76 91 eqeltrd φQ!k=0QFk
93 75 92 zsubcld φQ!eQ!k=0QFk
94 63 93 eqeltrd φQ!kQ+1Fk
95 0zd φ0
96 57 nnrpd φQ!+
97 96 39 rpmulcld φQ!kQ+1Fk+
98 97 rpgt0d φ0<Q!kQ+1Fk
99 24 peano2nnd φQ+1+1
100 99 nnred φQ+1+1
101 25 faccld φQ+1!
102 101 24 nnmulcld φQ+1!Q+1
103 100 102 nndivred φQ+1+1Q+1!Q+1
104 57 nnrecred φ1Q!
105 abs1 1=1
106 105 oveq1i 1n=1n
107 106 oveq1i 1nn!=1nn!
108 107 mpteq2i n01nn!=n01nn!
109 12 108 eqtr4i F=n01nn!
110 eqid n01Q+1Q+1!1Q+1+1n=n01Q+1Q+1!1Q+1+1n
111 1le1 11
112 105 111 eqbrtri 11
113 112 a1i φ11
114 12 109 110 24 16 113 eftlub φkQ+1Fk1Q+1Q+1+1Q+1!Q+1
115 39 rprege0d φkQ+1Fk0kQ+1Fk
116 absid kQ+1Fk0kQ+1FkkQ+1Fk=kQ+1Fk
117 115 116 syl φkQ+1Fk=kQ+1Fk
118 105 oveq1i 1Q+1=1Q+1
119 24 nnzd φQ+1
120 1exp Q+11Q+1=1
121 119 120 syl φ1Q+1=1
122 118 121 eqtrid φ1Q+1=1
123 122 oveq1d φ1Q+1Q+1+1Q+1!Q+1=1Q+1+1Q+1!Q+1
124 103 recnd φQ+1+1Q+1!Q+1
125 124 mullidd φ1Q+1+1Q+1!Q+1=Q+1+1Q+1!Q+1
126 123 125 eqtrd φ1Q+1Q+1+1Q+1!Q+1=Q+1+1Q+1!Q+1
127 114 117 126 3brtr3d φkQ+1FkQ+1+1Q+1!Q+1
128 24 nnred φQ+1
129 128 128 readdcld φQ+1+Q+1
130 128 128 remulcld φQ+1Q+1
131 1red φ1
132 3 nnge1d φ1Q
133 1nn 1
134 nnleltp1 1Q1Q1<Q+1
135 133 3 134 sylancr φ1Q1<Q+1
136 132 135 mpbid φ1<Q+1
137 131 128 128 136 ltadd2dd φQ+1+1<Q+1+Q+1
138 24 nncnd φQ+1
139 138 2timesd φ2Q+1=Q+1+Q+1
140 df-2 2=1+1
141 131 69 131 132 leadd1dd φ1+1Q+1
142 140 141 eqbrtrid φ2Q+1
143 2re 2
144 143 a1i φ2
145 24 nngt0d φ0<Q+1
146 lemul1 2Q+1Q+10<Q+12Q+12Q+1Q+1Q+1
147 144 128 128 145 146 syl112anc φ2Q+12Q+1Q+1Q+1
148 142 147 mpbid φ2Q+1Q+1Q+1
149 139 148 eqbrtrrd φQ+1+Q+1Q+1Q+1
150 100 129 130 137 149 ltletrd φQ+1+1<Q+1Q+1
151 facp1 Q0Q+1!=Q!Q+1
152 56 151 syl φQ+1!=Q!Q+1
153 152 oveq1d φQ+1!Q!=Q!Q+1Q!
154 101 nncnd φQ+1!
155 57 nnne0d φQ!0
156 154 58 155 divrecd φQ+1!Q!=Q+1!1Q!
157 138 58 155 divcan3d φQ!Q+1Q!=Q+1
158 153 156 157 3eqtr3rd φQ+1=Q+1!1Q!
159 158 oveq1d φQ+1Q+1=Q+1!1Q!Q+1
160 104 recnd φ1Q!
161 154 160 138 mul32d φQ+1!1Q!Q+1=Q+1!Q+11Q!
162 159 161 eqtrd φQ+1Q+1=Q+1!Q+11Q!
163 150 162 breqtrd φQ+1+1<Q+1!Q+11Q!
164 102 nnred φQ+1!Q+1
165 102 nngt0d φ0<Q+1!Q+1
166 ltdivmul Q+1+11Q!Q+1!Q+10<Q+1!Q+1Q+1+1Q+1!Q+1<1Q!Q+1+1<Q+1!Q+11Q!
167 100 104 164 165 166 syl112anc φQ+1+1Q+1!Q+1<1Q!Q+1+1<Q+1!Q+11Q!
168 163 167 mpbird φQ+1+1Q+1!Q+1<1Q!
169 40 103 104 127 168 lelttrd φkQ+1Fk<1Q!
170 40 131 96 ltmuldiv2d φQ!kQ+1Fk<1kQ+1Fk<1Q!
171 169 170 mpbird φQ!kQ+1Fk<1
172 0p1e1 0+1=1
173 171 172 breqtrrdi φQ!kQ+1Fk<0+1
174 btwnnz 00<Q!kQ+1FkQ!kQ+1Fk<0+1¬Q!kQ+1Fk
175 95 98 173 174 syl3anc φ¬Q!kQ+1Fk
176 94 175 pm2.65i ¬φ