Metamath Proof Explorer


Theorem expcnv

Description: A sequence of powers of a complex number A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006) (Proof shortened by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses expcnv.1 φA
expcnv.2 φA<1
Assertion expcnv φn0An0

Proof

Step Hyp Ref Expression
1 expcnv.1 φA
2 expcnv.2 φA<1
3 nnuz =1
4 1zzd φA=01
5 nn0ex 0V
6 5 mptex n0AnV
7 6 a1i φA=0n0AnV
8 0cnd φA=00
9 nnnn0 kk0
10 oveq2 n=kAn=Ak
11 eqid n0An=n0An
12 ovex AkV
13 10 11 12 fvmpt k0n0Ank=Ak
14 9 13 syl kn0Ank=Ak
15 simpr φA=0A=0
16 15 oveq1d φA=0Ak=0k
17 14 16 sylan9eqr φA=0kn0Ank=0k
18 0exp k0k=0
19 18 adantl φA=0k0k=0
20 17 19 eqtrd φA=0kn0Ank=0
21 3 4 7 8 20 climconst φA=0n0An0
22 1zzd φA01
23 2 adantr φA0A<1
24 absrpcl AA0A+
25 1 24 sylan φA0A+
26 25 reclt1d φA0A<11<1A
27 23 26 mpbid φA01<1A
28 1re 1
29 25 rpreccld φA01A+
30 29 rpred φA01A
31 difrp 11A1<1A1A1+
32 28 30 31 sylancr φA01<1A1A1+
33 27 32 mpbid φA01A1+
34 33 rpreccld φA011A1+
35 34 rpcnd φA011A1
36 divcnv 11A1n11A1n0
37 35 36 syl φA0n11A1n0
38 nnex V
39 38 mptex nAnV
40 39 a1i φA0nAnV
41 oveq2 n=k11A1n=11A1k
42 eqid n11A1n=n11A1n
43 ovex 11A1kV
44 41 42 43 fvmpt kn11A1nk=11A1k
45 44 adantl φA0kn11A1nk=11A1k
46 34 rpred φA011A1
47 nndivre 11A1k11A1k
48 46 47 sylan φA0k11A1k
49 45 48 eqeltrd φA0kn11A1nk
50 oveq2 n=kAn=Ak
51 eqid nAn=nAn
52 ovex AkV
53 50 51 52 fvmpt knAnk=Ak
54 53 adantl φA0knAnk=Ak
55 nnz kk
56 rpexpcl A+kAk+
57 25 55 56 syl2an φA0kAk+
58 54 57 eqeltrd φA0knAnk+
59 58 rpred φA0knAnk
60 nnrp kk+
61 rpmulcl 1A1+k+1A1k+
62 33 60 61 syl2an φA0k1A1k+
63 62 rpred φA0k1A1k
64 peano2re 1A1k1A1k+1
65 63 64 syl φA0k1A1k+1
66 rpexpcl 1A+k1Ak+
67 29 55 66 syl2an φA0k1Ak+
68 67 rpred φA0k1Ak
69 63 lep1d φA0k1A1k1A1k+1
70 30 adantr φA0k1A
71 9 adantl φA0kk0
72 29 rpge0d φA001A
73 72 adantr φA0k01A
74 bernneq2 1Ak001A1A1k+11Ak
75 70 71 73 74 syl3anc φA0k1A1k+11Ak
76 63 65 68 69 75 letrd φA0k1A1k1Ak
77 25 rpcnne0d φA0AA0
78 exprec AA0k1Ak=1Ak
79 78 3expa AA0k1Ak=1Ak
80 77 55 79 syl2an φA0k1Ak=1Ak
81 76 80 breqtrd φA0k1A1k1Ak
82 62 57 81 lerec2d φA0kAk11A1k
83 33 rpcnne0d φA01A11A10
84 nncn kk
85 nnne0 kk0
86 84 85 jca kkk0
87 recdiv2 1A11A10kk011A1k=11A1k
88 83 86 87 syl2an φA0k11A1k=11A1k
89 82 88 breqtrrd φA0kAk11A1k
90 89 54 45 3brtr4d φA0knAnkn11A1nk
91 58 rpge0d φA0k0nAnk
92 3 22 37 40 49 59 90 91 climsqz2 φA0nAn0
93 1zzd φ1
94 6 a1i φn0AnV
95 39 a1i φnAnV
96 9 adantl φkk0
97 96 13 syl φkn0Ank=Ak
98 expcl Ak0Ak
99 1 9 98 syl2an φkAk
100 97 99 eqeltrd φkn0Ank
101 absexp Ak0Ak=Ak
102 1 9 101 syl2an φkAk=Ak
103 97 fveq2d φkn0Ank=Ak
104 53 adantl φknAnk=Ak
105 102 103 104 3eqtr4rd φknAnk=n0Ank
106 3 93 94 95 100 105 climabs0 φn0An0nAn0
107 106 biimpar φnAn0n0An0
108 92 107 syldan φA0n0An0
109 21 108 pm2.61dane φn0An0