Metamath Proof Explorer


Theorem fmul01lt1lem1

Description: Given a finite multiplication of values betweeen 0 and 1, a value larger than its first element is larger the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01lt1lem1.1 _iB
fmul01lt1lem1.2 iφ
fmul01lt1lem1.3 A=seqL×B
fmul01lt1lem1.4 φL
fmul01lt1lem1.5 φML
fmul01lt1lem1.6 φiLMBi
fmul01lt1lem1.7 φiLM0Bi
fmul01lt1lem1.8 φiLMBi1
fmul01lt1lem1.9 φE+
fmul01lt1lem1.10 φBL<E
Assertion fmul01lt1lem1 φAM<E

Proof

Step Hyp Ref Expression
1 fmul01lt1lem1.1 _iB
2 fmul01lt1lem1.2 iφ
3 fmul01lt1lem1.3 A=seqL×B
4 fmul01lt1lem1.4 φL
5 fmul01lt1lem1.5 φML
6 fmul01lt1lem1.6 φiLMBi
7 fmul01lt1lem1.7 φiLM0Bi
8 fmul01lt1lem1.8 φiLMBi1
9 fmul01lt1lem1.9 φE+
10 fmul01lt1lem1.10 φBL<E
11 simpr φM=LM=L
12 11 fveq2d φM=LAM=AL
13 3 a1i φM=LA=seqL×B
14 13 fveq1d φM=LAL=seqL×BL
15 seq1 LseqL×BL=BL
16 4 15 syl φseqL×BL=BL
17 16 adantr φM=LseqL×BL=BL
18 12 14 17 3eqtrd φM=LAM=BL
19 10 adantr φM=LBL<E
20 18 19 eqbrtrd φM=LAM<E
21 simpr φ¬M=L¬M=L
22 21 neqned φ¬M=LML
23 4 zred φL
24 eluzelz MLM
25 5 24 syl φM
26 25 zred φM
27 eluzle MLLM
28 5 27 syl φLM
29 23 26 28 3jca φLMLM
30 29 adantr φ¬M=LLMLM
31 leltne LMLML<MML
32 30 31 syl φ¬M=LL<MML
33 22 32 mpbird φ¬M=LL<M
34 3 fveq1i AM=seqL×BM
35 remulcl jkjk
36 35 adantl φL<Mjkjk
37 recn jj
38 37 3ad2ant1 jklj
39 recn kk
40 39 3ad2ant2 jklk
41 recn ll
42 41 3ad2ant3 jkll
43 38 40 42 mulassd jkljkl=jkl
44 43 adantl φL<Mjkljkl=jkl
45 simpr φL<ML<M
46 45 olcd φL<MM<LL<M
47 26 23 jca φML
48 47 adantr φL<MML
49 lttri2 MLMLM<LL<M
50 48 49 syl φL<MMLM<LL<M
51 46 50 mpbird φL<MML
52 51 neneqd φL<M¬M=L
53 uzp1 MLM=LML+1
54 5 53 syl φM=LML+1
55 54 adantr φL<MM=LML+1
56 55 ord φL<M¬M=LML+1
57 52 56 mpd φL<MML+1
58 4 adantr φL<ML
59 uzid LLL
60 58 59 syl φL<MLL
61 nfv ijLM
62 2 61 nfan iφjLM
63 nfcv _ij
64 1 63 nffv _iBj
65 64 nfel1 iBj
66 62 65 nfim iφjLMBj
67 eleq1 i=jiLMjLM
68 67 anbi2d i=jφiLMφjLM
69 fveq2 i=jBi=Bj
70 69 eleq1d i=jBiBj
71 68 70 imbi12d i=jφiLMBiφjLMBj
72 66 71 6 chvarfv φjLMBj
73 72 adantlr φL<MjLMBj
74 36 44 57 60 73 seqsplit φL<MseqL×BM=seqL×BLseqL+1×BM
75 eluzfz1 MLLLM
76 5 75 syl φLLM
77 76 ancli φφLLM
78 nfv iLLM
79 2 78 nfan iφLLM
80 nfcv _iL
81 1 80 nffv _iBL
82 81 nfel1 iBL
83 79 82 nfim iφLLMBL
84 eleq1 i=LiLMLLM
85 84 anbi2d i=LφiLMφLLM
86 fveq2 i=LBi=BL
87 86 eleq1d i=LBiBL
88 85 87 imbi12d i=LφiLMBiφLLMBL
89 83 88 6 vtoclg1f LLMφLLMBL
90 76 77 89 sylc φBL
91 16 90 eqeltrd φseqL×BL
92 91 adantr φL<MseqL×BL
93 4 adantr φjL+1ML
94 25 adantr φjL+1MM
95 elfzelz jL+1Mj
96 95 adantl φjL+1Mj
97 23 adantr φjL+1ML
98 peano2re LL+1
99 23 98 syl φL+1
100 99 adantr φjL+1ML+1
101 95 zred jL+1Mj
102 101 adantl φjL+1Mj
103 23 lep1d φLL+1
104 103 adantr φjL+1MLL+1
105 elfzle1 jL+1ML+1j
106 105 adantl φjL+1ML+1j
107 97 100 102 104 106 letrd φjL+1MLj
108 elfzle2 jL+1MjM
109 108 adantl φjL+1MjM
110 93 94 96 107 109 elfzd φjL+1MjLM
111 110 72 syldan φjL+1MBj
112 111 adantlr φL<MjL+1MBj
113 57 112 36 seqcl φL<MseqL+1×BM
114 92 113 remulcld φL<MseqL×BLseqL+1×BM
115 9 rpred φE
116 115 adantr φL<ME
117 1red φL<M1
118 nfcv _i0
119 nfcv _i
120 118 119 81 nfbr i0BL
121 79 120 nfim iφLLM0BL
122 86 breq2d i=L0Bi0BL
123 85 122 imbi12d i=LφiLM0BiφLLM0BL
124 121 123 7 vtoclg1f LLMφLLM0BL
125 76 77 124 sylc φ0BL
126 125 16 breqtrrd φ0seqL×BL
127 126 adantr φL<M0seqL×BL
128 nfv iL<M
129 2 128 nfan iφL<M
130 eqid seqL+1×B=seqL+1×B
131 4 peano2zd φL+1
132 131 adantr φL<ML+1
133 23 adantr φL<ML
134 133 45 gtned φL<MML
135 134 neneqd φL<M¬M=L
136 5 adantr φL<MML
137 136 53 syl φL<MM=LML+1
138 orel1 ¬M=LM=LML+1ML+1
139 135 137 138 sylc φL<MML+1
140 25 adantr φL<MM
141 zltp1le LML<ML+1M
142 58 140 141 syl2anc φL<ML<ML+1M
143 45 142 mpbid φL<ML+1M
144 26 adantr φL<MM
145 144 leidd φL<MMM
146 132 140 140 143 145 elfzd φL<MML+1M
147 4 adantr φiL+1ML
148 25 adantr φiL+1MM
149 elfzelz iL+1Mi
150 149 adantl φiL+1Mi
151 23 adantr φiL+1ML
152 151 98 syl φiL+1ML+1
153 149 zred iL+1Mi
154 153 adantl φiL+1Mi
155 103 adantr φiL+1MLL+1
156 elfzle1 iL+1ML+1i
157 156 adantl φiL+1ML+1i
158 151 152 154 155 157 letrd φiL+1MLi
159 elfzle2 iL+1MiM
160 159 adantl φiL+1MiM
161 147 148 150 158 160 elfzd φiL+1MiLM
162 161 6 syldan φiL+1MBi
163 162 adantlr φL<MiL+1MBi
164 simpll φL<MiL+1Mφ
165 4 ad2antrr φL<MiL+1ML
166 25 ad2antrr φL<MiL+1MM
167 149 adantl φL<MiL+1Mi
168 23 ad2antrr φL<MiL+1ML
169 99 ad2antrr φL<MiL+1ML+1
170 153 adantl φL<MiL+1Mi
171 103 ad2antrr φL<MiL+1MLL+1
172 156 adantl φL<MiL+1ML+1i
173 168 169 170 171 172 letrd φL<MiL+1MLi
174 159 adantl φL<MiL+1MiM
175 165 166 167 173 174 elfzd φL<MiL+1MiLM
176 164 175 7 syl2anc φL<MiL+1M0Bi
177 164 175 8 syl2anc φL<MiL+1MBi1
178 1 129 130 132 139 146 163 176 177 fmul01 φL<M0seqL+1×BMseqL+1×BM1
179 178 simprd φL<MseqL+1×BM1
180 113 117 92 127 179 lemul2ad φL<MseqL×BLseqL+1×BMseqL×BL1
181 91 recnd φseqL×BL
182 181 mulridd φseqL×BL1=seqL×BL
183 182 adantr φL<MseqL×BL1=seqL×BL
184 180 183 breqtrd φL<MseqL×BLseqL+1×BMseqL×BL
185 16 10 eqbrtrd φseqL×BL<E
186 185 adantr φL<MseqL×BL<E
187 114 92 116 184 186 lelttrd φL<MseqL×BLseqL+1×BM<E
188 74 187 eqbrtrd φL<MseqL×BM<E
189 34 188 eqbrtrid φL<MAM<E
190 33 189 syldan φ¬M=LAM<E
191 20 190 pm2.61dan φAM<E