Metamath Proof Explorer


Theorem fperdvper

Description: The derivative of a periodic function is periodic. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fperdvper.f φF:
fperdvper.t φT
fperdvper.fper φxFx+T=Fx
fperdvper.g G=DF
Assertion fperdvper φxdomGx+TdomGGx+T=Gx

Proof

Step Hyp Ref Expression
1 fperdvper.f φF:
2 fperdvper.t φT
3 fperdvper.fper φxFx+T=Fx
4 fperdvper.g G=DF
5 dvbsss domF
6 id xdomGxdomG
7 4 dmeqi domG=domF
8 6 7 eleqtrdi xdomGxdomF
9 5 8 sselid xdomGx
10 9 adantl φxdomGx
11 2 adantr φxdomGT
12 10 11 readdcld φxdomGx+T
13 reopn topGenran.
14 retop topGenran.Top
15 ssidd φxdomG
16 uniretop =topGenran.
17 16 isopn3 topGenran.ToptopGenran.inttopGenran.=
18 14 15 17 sylancr φxdomGtopGenran.inttopGenran.=
19 13 18 mpbii φxdomGinttopGenran.=
20 19 eqcomd φxdomG=inttopGenran.
21 12 20 eleqtrd φxdomGx+TinttopGenran.
22 8 adantl φxdomGxdomF
23 4 fveq1i Gx=Fx
24 23 eqcomi Fx=Gx
25 24 a1i φxdomGFx=Gx
26 dvf F:domF
27 ffun F:domFFunF
28 26 27 ax-mp FunF
29 28 a1i φFunF
30 funbrfv2b FunFxFGxxdomFFx=Gx
31 29 30 syl φxFGxxdomFFx=Gx
32 31 adantr φxdomGxFGxxdomFFx=Gx
33 22 25 32 mpbir2and φxdomGxFGx
34 tgioo4 topGenran.=TopOpenfld𝑡
35 eqid TopOpenfld=TopOpenfld
36 eqid yxFyFxyx=yxFyFxyx
37 ax-resscn
38 37 a1i φxdomG
39 1 adantr φxdomGF:
40 34 35 36 38 39 15 eldv φxdomGxFGxxinttopGenran.GxyxFyFxyxlimx
41 33 40 mpbid φxdomGxinttopGenran.GxyxFyFxyxlimx
42 41 simprd φxdomGGxyxFyFxyxlimx
43 eqidd φxdomGdx+Tyx+TFyFx+Tyx+T=yx+TFyFx+Tyx+T
44 fveq2 y=dFy=Fd
45 44 oveq1d y=dFyFx+T=FdFx+T
46 oveq1 y=dyx+T=dx+T
47 45 46 oveq12d y=dFyFx+Tyx+T=FdFx+Tdx+T
48 eldifi dx+Td
49 48 recnd dx+Td
50 49 adantl φdx+Td
51 2 recnd φT
52 51 adantr φdx+TT
53 50 52 npcand φdx+Td-T+T=d
54 53 eqcomd φdx+Td=d-T+T
55 54 fveq2d φdx+TFd=Fd-T+T
56 ovex dTV
57 48 adantl φdx+Td
58 2 adantr φdx+TT
59 57 58 resubcld φdx+TdT
60 59 ex φdx+TdT
61 60 imdistani φdx+TφdT
62 eleq1 x=dTxdT
63 62 anbi2d x=dTφxφdT
64 fvoveq1 x=dTFx+T=Fd-T+T
65 fveq2 x=dTFx=FdT
66 64 65 eqeq12d x=dTFx+T=FxFd-T+T=FdT
67 63 66 imbi12d x=dTφxFx+T=FxφdTFd-T+T=FdT
68 67 3 vtoclg dTVφdTFd-T+T=FdT
69 56 61 68 mpsyl φdx+TFd-T+T=FdT
70 55 69 eqtrd φdx+TFd=FdT
71 70 adantlr φxdomGdx+TFd=FdT
72 simpll φxdomGdx+Tφ
73 9 ad2antlr φxdomGdx+Tx
74 72 73 3 syl2anc φxdomGdx+TFx+T=Fx
75 71 74 oveq12d φxdomGdx+TFdFx+T=FdTFx
76 49 adantl φxdomGdx+Td
77 72 51 syl φxdomGdx+TT
78 10 recnd φxdomGx
79 78 adantr φxdomGdx+Tx
80 76 77 79 subsub4d φxdomGdx+Td-T-x=dT+x
81 77 79 addcomd φxdomGdx+TT+x=x+T
82 81 oveq2d φxdomGdx+TdT+x=dx+T
83 80 82 eqtr2d φxdomGdx+Tdx+T=d-T-x
84 75 83 oveq12d φxdomGdx+TFdFx+Tdx+T=FdTFxd-T-x
85 47 84 sylan9eqr φxdomGdx+Ty=dFyFx+Tyx+T=FdTFxd-T-x
86 simpr φxdomGdx+Tdx+T
87 1 adantr φdx+TF:
88 87 59 ffvelcdmd φdx+TFdT
89 88 adantlr φxdomGdx+TFdT
90 39 10 ffvelcdmd φxdomGFx
91 90 adantr φxdomGdx+TFx
92 89 91 subcld φxdomGdx+TFdTFx
93 76 77 subcld φxdomGdx+TdT
94 93 79 subcld φxdomGdx+Td-T-x
95 simpr φxdomGdx+TdT=xdT=x
96 49 ad2antlr φxdomGdx+TdT=xd
97 77 adantr φxdomGdx+TdT=xT
98 79 adantr φxdomGdx+TdT=xx
99 96 97 98 subadd2d φxdomGdx+TdT=xdT=xx+T=d
100 95 99 mpbid φxdomGdx+TdT=xx+T=d
101 100 eqcomd φxdomGdx+TdT=xd=x+T
102 eldifsni dx+Tdx+T
103 102 ad2antlr φxdomGdx+TdT=xdx+T
104 103 neneqd φxdomGdx+TdT=x¬d=x+T
105 101 104 pm2.65da φxdomGdx+T¬dT=x
106 105 neqned φxdomGdx+TdTx
107 93 79 106 subne0d φxdomGdx+Td-T-x0
108 92 94 107 divcld φxdomGdx+TFdTFxd-T-x
109 43 85 86 108 fvmptd φxdomGdx+Tyx+TFyFx+Tyx+Td=FdTFxd-T-x
110 109 fvoveq1d φxdomGdx+Tyx+TFyFx+Tyx+Tdw=FdTFxd-T-xw
111 110 ad4ant13 φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw=FdTFxd-T-xw
112 neeq1 c=dTcxdTx
113 fvoveq1 c=dTcx=d-T-x
114 113 breq1d c=dTcx<bd-T-x<b
115 112 114 anbi12d c=dTcxcx<bdTxd-T-x<b
116 115 imbrov2fvoveq c=dTcxcx<byxFyFxyxcw<adTxd-T-x<byxFyFxyxdTw<a
117 simpllr φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<bcxcxcx<byxFyFxyxcw<a
118 48 ad2antlr φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<bd
119 2 ad4antr φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<bT
120 118 119 resubcld φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<bdT
121 elsni dTxdT=x
122 105 121 nsyl φxdomGdx+T¬dTx
123 122 ad4ant13 φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<b¬dTx
124 120 123 eldifd φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<bdTx
125 116 117 124 rspcdva φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<a
126 eqidd φxdomGdx+TyxFyFxyx=yxFyFxyx
127 simpr φxdomGdx+Ty=dTy=dT
128 127 fveq2d φxdomGdx+Ty=dTFy=FdT
129 128 oveq1d φxdomGdx+Ty=dTFyFx=FdTFx
130 127 oveq1d φxdomGdx+Ty=dTyx=d-T-x
131 129 130 oveq12d φxdomGdx+Ty=dTFyFxyx=FdTFxd-T-x
132 48 adantl φxdomGdx+Td
133 72 2 syl φxdomGdx+TT
134 132 133 resubcld φxdomGdx+TdT
135 134 122 eldifd φxdomGdx+TdTx
136 126 131 135 108 fvmptd φxdomGdx+TyxFyFxyxdT=FdTFxd-T-x
137 136 eqcomd φxdomGdx+TFdTFxd-T-x=yxFyFxyxdT
138 137 ad2antrr φxdomGdx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<aFdTFxd-T-x=yxFyFxyxdT
139 138 fvoveq1d φxdomGdx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<aFdTFxd-T-xw=yxFyFxyxdTw
140 106 adantr φxdomGdx+Tdx+T<bdTx
141 83 eqcomd φxdomGdx+Td-T-x=dx+T
142 141 adantr φxdomGdx+Tdx+T<bd-T-x=dx+T
143 142 fveq2d φxdomGdx+Tdx+T<bd-T-x=dx+T
144 simpr φxdomGdx+Tdx+T<bdx+T<b
145 143 144 eqbrtrd φxdomGdx+Tdx+T<bd-T-x<b
146 140 145 jca φxdomGdx+Tdx+T<bdTxd-T-x<b
147 146 adantr φxdomGdx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<adTxd-T-x<b
148 simpr φxdomGdx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<adTxd-T-x<byxFyFxyxdTw<a
149 147 148 mpd φxdomGdx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<ayxFyFxyxdTw<a
150 139 149 eqbrtrd φxdomGdx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<aFdTFxd-T-xw<a
151 150 ex φxdomGdx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<aFdTFxd-T-xw<a
152 151 adantllr φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<bdTxd-T-x<byxFyFxyxdTw<aFdTFxd-T-xw<a
153 125 152 mpd φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+T<bFdTFxd-T-xw<a
154 153 adantrl φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+Tdx+T<bFdTFxd-T-xw<a
155 111 154 eqbrtrd φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
156 155 ex φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
157 156 ralrimiva φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
158 eqidd cxyxFyFxyx=yxFyFxyx
159 fveq2 y=cFy=Fc
160 159 oveq1d y=cFyFx=FcFx
161 oveq1 y=cyx=cx
162 160 161 oveq12d y=cFyFxyx=FcFxcx
163 162 adantl cxy=cFyFxyx=FcFxcx
164 id cxcx
165 ovexd cxFcFxcxV
166 158 163 164 165 fvmptd cxyxFyFxyxc=FcFxcx
167 166 fvoveq1d cxyxFyFxyxcw=FcFxcxw
168 167 ad2antlr φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcxcx<byxFyFxyxcw=FcFxcxw
169 simpll φxdomGcxφ
170 eldifi cxc
171 170 adantl φxdomGcxc
172 eleq1 x=cxc
173 172 anbi2d x=cφxφc
174 fvoveq1 x=cFx+T=Fc+T
175 fveq2 x=cFx=Fc
176 174 175 eqeq12d x=cFx+T=FxFc+T=Fc
177 173 176 imbi12d x=cφxFx+T=FxφcFc+T=Fc
178 177 3 chvarvv φcFc+T=Fc
179 178 eqcomd φcFc=Fc+T
180 169 171 179 syl2anc φxdomGcxFc=Fc+T
181 9 ad2antlr φxdomGcxx
182 169 181 3 syl2anc φxdomGcxFx+T=Fx
183 182 eqcomd φxdomGcxFx=Fx+T
184 180 183 oveq12d φxdomGcxFcFx=Fc+TFx+T
185 171 recnd φxdomGcxc
186 78 adantr φxdomGcxx
187 169 51 syl φxdomGcxT
188 185 186 187 pnpcan2d φxdomGcxc+T-x+T=cx
189 188 eqcomd φxdomGcxcx=c+T-x+T
190 184 189 oveq12d φxdomGcxFcFxcx=Fc+TFx+Tc+T-x+T
191 190 fvoveq1d φxdomGcxFcFxcxw=Fc+TFx+Tc+T-x+Tw
192 191 ad4ant13 φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bFcFxcxw=Fc+TFx+Tc+T-x+Tw
193 neeq1 d=c+Tdx+Tc+Tx+T
194 fvoveq1 d=c+Tdx+T=c+T-x+T
195 194 breq1d d=c+Tdx+T<bc+T-x+T<b
196 193 195 anbi12d d=c+Tdx+Tdx+T<bc+Tx+Tc+T-x+T<b
197 196 imbrov2fvoveq d=c+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<ac+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<a
198 simpllr φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
199 170 ad2antlr φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bc
200 2 ad4antr φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bT
201 199 200 readdcld φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bc+T
202 eldifsni cxcx
203 202 adantl φxdomGcxcx
204 185 186 187 203 addneintr2d φxdomGcxc+Tx+T
205 204 ad4ant13 φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bc+Tx+T
206 nelsn c+Tx+T¬c+Tx+T
207 205 206 syl φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<b¬c+Tx+T
208 201 207 eldifd φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bc+Tx+T
209 197 198 208 rspcdva φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<a
210 eqidd φxdomGcxyx+TFyFx+Tyx+T=yx+TFyFx+Tyx+T
211 fveq2 y=c+TFy=Fc+T
212 211 oveq1d y=c+TFyFx+T=Fc+TFx+T
213 oveq1 y=c+Tyx+T=c+T-x+T
214 212 213 oveq12d y=c+TFyFx+Tyx+T=Fc+TFx+Tc+T-x+T
215 214 adantl φxdomGcxy=c+TFyFx+Tyx+T=Fc+TFx+Tc+T-x+T
216 169 2 syl φxdomGcxT
217 171 216 readdcld φxdomGcxc+T
218 204 206 syl φxdomGcx¬c+Tx+T
219 217 218 eldifd φxdomGcxc+Tx+T
220 ovexd φxdomGcxFc+TFx+Tc+T-x+TV
221 210 215 219 220 fvmptd φxdomGcxyx+TFyFx+Tyx+Tc+T=Fc+TFx+Tc+T-x+T
222 221 eqcomd φxdomGcxFc+TFx+Tc+T-x+T=yx+TFyFx+Tyx+Tc+T
223 222 ad2antrr φxdomGcxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<aFc+TFx+Tc+T-x+T=yx+TFyFx+Tyx+Tc+T
224 223 fvoveq1d φxdomGcxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<aFc+TFx+Tc+T-x+Tw=yx+TFyFx+Tyx+Tc+Tw
225 204 adantr φxdomGcxcx<bc+Tx+T
226 170 recnd cxc
227 226 ad2antlr φxdomGcxcx<bc
228 186 adantr φxdomGcxcx<bx
229 187 adantr φxdomGcxcx<bT
230 227 228 229 pnpcan2d φxdomGcxcx<bc+T-x+T=cx
231 230 fveq2d φxdomGcxcx<bc+T-x+T=cx
232 simpr φxdomGcxcx<bcx<b
233 231 232 eqbrtrd φxdomGcxcx<bc+T-x+T<b
234 225 233 jca φxdomGcxcx<bc+Tx+Tc+T-x+T<b
235 234 adantr φxdomGcxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<ac+Tx+Tc+T-x+T<b
236 simpr φxdomGcxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<ac+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<a
237 235 236 mpd φxdomGcxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<ayx+TFyFx+Tyx+Tc+Tw<a
238 224 237 eqbrtrd φxdomGcxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<aFc+TFx+Tc+T-x+Tw<a
239 238 ex φxdomGcxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<aFc+TFx+Tc+T-x+Tw<a
240 239 adantllr φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bc+Tx+Tc+T-x+T<byx+TFyFx+Tyx+Tc+Tw<aFc+TFx+Tc+T-x+Tw<a
241 209 240 mpd φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bFc+TFx+Tc+T-x+Tw<a
242 192 241 eqbrtrd φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcx<bFcFxcxw<a
243 242 adantrl φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcxcx<bFcFxcxw<a
244 168 243 eqbrtrd φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcxcx<byxFyFxyxcw<a
245 244 ex φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcxcx<byxFyFxyxcw<a
246 245 ralrimiva φxdomGdx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<acxcxcx<byxFyFxyxcw<a
247 157 246 impbida φxdomGcxcxcx<byxFyFxyxcw<adx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
248 247 rexbidv φxdomGb+cxcxcx<byxFyFxyxcw<ab+dx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
249 248 ralbidv φxdomGa+b+cxcxcx<byxFyFxyxcw<aa+b+dx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
250 249 anbi2d φxdomGwa+b+cxcxcx<byxFyFxyxcw<awa+b+dx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
251 39 38 10 dvlem φxdomGyxFyFxyx
252 251 fmpttd φxdomGyxFyFxyx:x
253 38 ssdifssd φxdomGx
254 252 253 78 ellimc3 φxdomGwyxFyFxyxlimxwa+b+cxcxcx<byxFyFxyxcw<a
255 39 38 12 dvlem φxdomGyx+TFyFx+Tyx+T
256 255 fmpttd φxdomGyx+TFyFx+Tyx+T:x+T
257 38 ssdifssd φxdomGx+T
258 12 recnd φxdomGx+T
259 256 257 258 ellimc3 φxdomGwyx+TFyFx+Tyx+Tlimx+Twa+b+dx+Tdx+Tdx+T<byx+TFyFx+Tyx+Tdw<a
260 250 254 259 3bitr4d φxdomGwyxFyFxyxlimxwyx+TFyFx+Tyx+Tlimx+T
261 260 eqrdv φxdomGyxFyFxyxlimx=yx+TFyFx+Tyx+Tlimx+T
262 fveq2 y=zFy=Fz
263 262 oveq1d y=zFyFx+T=FzFx+T
264 oveq1 y=zyx+T=zx+T
265 263 264 oveq12d y=zFyFx+Tyx+T=FzFx+Tzx+T
266 265 cbvmptv yx+TFyFx+Tyx+T=zx+TFzFx+Tzx+T
267 266 oveq1i yx+TFyFx+Tyx+Tlimx+T=zx+TFzFx+Tzx+Tlimx+T
268 261 267 eqtrdi φxdomGyxFyFxyxlimx=zx+TFzFx+Tzx+Tlimx+T
269 42 268 eleqtrd φxdomGGxzx+TFzFx+Tzx+Tlimx+T
270 eqid zx+TFzFx+Tzx+T=zx+TFzFx+Tzx+T
271 37 a1i φ
272 ssidd φ
273 34 35 270 271 1 272 eldv φx+TFGxx+TinttopGenran.Gxzx+TFzFx+Tzx+Tlimx+T
274 273 adantr φxdomGx+TFGxx+TinttopGenran.Gxzx+TFzFx+Tzx+Tlimx+T
275 21 269 274 mpbir2and φxdomGx+TFGx
276 4 a1i φxdomGG=DF
277 276 breqd φxdomGx+TGGxx+TFGx
278 275 277 mpbird φxdomGx+TGGx
279 4 a1i φG=DF
280 279 funeqd φFunGFunF
281 29 280 mpbird φFunG
282 281 adantr φxdomGFunG
283 funbrfv2b FunGx+TGGxx+TdomGGx+T=Gx
284 282 283 syl φxdomGx+TGGxx+TdomGGx+T=Gx
285 278 284 mpbid φxdomGx+TdomGGx+T=Gx