Metamath Proof Explorer


Theorem fprodss

Description: Change the index set to a subset in a finite product. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses fprodss.1 φAB
fprodss.2 φkAC
fprodss.3 φkBAC=1
fprodss.4 φBFin
Assertion fprodss φkAC=kBC

Proof

Step Hyp Ref Expression
1 fprodss.1 φAB
2 fprodss.2 φkAC
3 fprodss.3 φkBAC=1
4 fprodss.4 φBFin
5 sseq2 B=ABA
6 ss0 AA=
7 5 6 syl6bi B=ABA=
8 prodeq1 A=kAC=kC
9 prodeq1 B=kBC=kC
10 9 eqcomd B=kC=kBC
11 8 10 sylan9eq A=B=kAC=kBC
12 11 expcom B=A=kAC=kBC
13 7 12 syld B=ABkAC=kBC
14 1 13 syl5com φB=kAC=kBC
15 cnvimass f-1Adomf
16 simprr φBf:1B1-1 ontoBf:1B1-1 ontoB
17 f1of f:1B1-1 ontoBf:1BB
18 16 17 syl φBf:1B1-1 ontoBf:1BB
19 15 18 fssdm φBf:1B1-1 ontoBf-1A1B
20 f1ofn f:1B1-1 ontoBfFn1B
21 elpreima fFn1Bnf-1An1BfnA
22 16 20 21 3syl φBf:1B1-1 ontoBnf-1An1BfnA
23 18 ffvelcdmda φBf:1B1-1 ontoBn1BfnB
24 23 ex φBf:1B1-1 ontoBn1BfnB
25 24 adantrd φBf:1B1-1 ontoBn1BfnAfnB
26 22 25 sylbid φBf:1B1-1 ontoBnf-1AfnB
27 26 imp φBf:1B1-1 ontoBnf-1AfnB
28 2 ex φkAC
29 28 adantr φkBkAC
30 eldif kBAkB¬kA
31 ax-1cn 1
32 3 31 eqeltrdi φkBAC
33 30 32 sylan2br φkB¬kAC
34 33 expr φkB¬kAC
35 29 34 pm2.61d φkBC
36 35 adantlr φBf:1B1-1 ontoBkBC
37 36 fmpttd φBf:1B1-1 ontoBkBC:B
38 37 ffvelcdmda φBf:1B1-1 ontoBfnBkBCfn
39 27 38 syldan φBf:1B1-1 ontoBnf-1AkBCfn
40 eqid 1=1
41 simprl φBf:1B1-1 ontoBB
42 nnuz =1
43 41 42 eleqtrdi φBf:1B1-1 ontoBB1
44 ssidd φBf:1B1-1 ontoB1B1B
45 40 43 44 fprodntriv φBf:1B1-1 ontoBm1yy0seqm×n1ifn1BkBCfn1y
46 eldifi n1Bf-1An1B
47 46 23 sylan2 φBf:1B1-1 ontoBn1Bf-1AfnB
48 eldifn n1Bf-1A¬nf-1A
49 48 adantl φBf:1B1-1 ontoBn1Bf-1A¬nf-1A
50 46 adantl φBf:1B1-1 ontoBn1Bf-1An1B
51 22 adantr φBf:1B1-1 ontoBn1Bf-1Anf-1An1BfnA
52 50 51 mpbirand φBf:1B1-1 ontoBn1Bf-1Anf-1AfnA
53 49 52 mtbid φBf:1B1-1 ontoBn1Bf-1A¬fnA
54 47 53 eldifd φBf:1B1-1 ontoBn1Bf-1AfnBA
55 difss BAB
56 resmpt BABkBCBA=kBAC
57 55 56 ax-mp kBCBA=kBAC
58 57 fveq1i kBCBAfn=kBACfn
59 fvres fnBAkBCBAfn=kBCfn
60 58 59 eqtr3id fnBAkBACfn=kBCfn
61 54 60 syl φBf:1B1-1 ontoBn1Bf-1AkBACfn=kBCfn
62 1ex 1V
63 62 elsn2 C1C=1
64 3 63 sylibr φkBAC1
65 64 fmpttd φkBAC:BA1
66 65 ad2antrr φBf:1B1-1 ontoBn1Bf-1AkBAC:BA1
67 66 54 ffvelcdmd φBf:1B1-1 ontoBn1Bf-1AkBACfn1
68 elsni kBACfn1kBACfn=1
69 67 68 syl φBf:1B1-1 ontoBn1Bf-1AkBACfn=1
70 61 69 eqtr3d φBf:1B1-1 ontoBn1Bf-1AkBCfn=1
71 fzssuz 1B1
72 71 a1i φBf:1B1-1 ontoB1B1
73 19 39 45 70 72 prodss φBf:1B1-1 ontoBnf-1AkBCfn=n=1BkBCfn
74 1 adantr φBf:1B1-1 ontoBAB
75 74 resmptd φBf:1B1-1 ontoBkBCA=kAC
76 75 fveq1d φBf:1B1-1 ontoBkBCAm=kACm
77 fvres mAkBCAm=kBCm
78 76 77 sylan9req φBf:1B1-1 ontoBmAkACm=kBCm
79 78 prodeq2dv φBf:1B1-1 ontoBmAkACm=mAkBCm
80 fveq2 m=fnkBCm=kBCfn
81 fzfid φBf:1B1-1 ontoB1BFin
82 81 18 fisuppfi φBf:1B1-1 ontoBf-1AFin
83 f1of1 f:1B1-1 ontoBf:1B1-1B
84 16 83 syl φBf:1B1-1 ontoBf:1B1-1B
85 f1ores f:1B1-1Bf-1A1Bff-1A:f-1A1-1 ontoff-1A
86 84 19 85 syl2anc φBf:1B1-1 ontoBff-1A:f-1A1-1 ontoff-1A
87 f1ofo f:1B1-1 ontoBf:1BontoB
88 16 87 syl φBf:1B1-1 ontoBf:1BontoB
89 foimacnv f:1BontoBABff-1A=A
90 88 74 89 syl2anc φBf:1B1-1 ontoBff-1A=A
91 90 f1oeq3d φBf:1B1-1 ontoBff-1A:f-1A1-1 ontoff-1Aff-1A:f-1A1-1 ontoA
92 86 91 mpbid φBf:1B1-1 ontoBff-1A:f-1A1-1 ontoA
93 fvres nf-1Aff-1An=fn
94 93 adantl φBf:1B1-1 ontoBnf-1Aff-1An=fn
95 74 sselda φBf:1B1-1 ontoBmAmB
96 37 ffvelcdmda φBf:1B1-1 ontoBmBkBCm
97 95 96 syldan φBf:1B1-1 ontoBmAkBCm
98 80 82 92 94 97 fprodf1o φBf:1B1-1 ontoBmAkBCm=nf-1AkBCfn
99 79 98 eqtrd φBf:1B1-1 ontoBmAkACm=nf-1AkBCfn
100 eqidd φBf:1B1-1 ontoBn1Bfn=fn
101 80 81 16 100 96 fprodf1o φBf:1B1-1 ontoBmBkBCm=n=1BkBCfn
102 73 99 101 3eqtr4d φBf:1B1-1 ontoBmAkACm=mBkBCm
103 prodfc mAkACm=kAC
104 prodfc mBkBCm=kBC
105 102 103 104 3eqtr3g φBf:1B1-1 ontoBkAC=kBC
106 105 expr φBf:1B1-1 ontoBkAC=kBC
107 106 exlimdv φBff:1B1-1 ontoBkAC=kBC
108 107 expimpd φBff:1B1-1 ontoBkAC=kBC
109 fz1f1o BFinB=Bff:1B1-1 ontoB
110 4 109 syl φB=Bff:1B1-1 ontoB
111 14 108 110 mpjaod φkAC=kBC