Metamath Proof Explorer


Theorem funcringcsetc

Description: The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 26-Mar-2020)

Ref Expression
Hypotheses funcringcsetc.r R=RingCatU
funcringcsetc.s S=SetCatU
funcringcsetc.b B=BaseR
funcringcsetc.u φUWUni
funcringcsetc.f φF=xBBasex
funcringcsetc.g φG=xB,yBIxRingHomy
Assertion funcringcsetc φFRFuncSG

Proof

Step Hyp Ref Expression
1 funcringcsetc.r R=RingCatU
2 funcringcsetc.s S=SetCatU
3 funcringcsetc.b B=BaseR
4 funcringcsetc.u φUWUni
5 funcringcsetc.f φF=xBBasex
6 funcringcsetc.g φG=xB,yBIxRingHomy
7 eqid ExtStrCatU=ExtStrCatU
8 eqid BaseExtStrCatU=BaseExtStrCatU
9 eqid BaseS=BaseS
10 7 4 estrcbas φU=BaseExtStrCatU
11 10 mpteq1d φxUBasex=xBaseExtStrCatUBasex
12 mpoeq12 U=BaseExtStrCatUU=BaseExtStrCatUxU,yUIBaseyBasex=xBaseExtStrCatU,yBaseExtStrCatUIBaseyBasex
13 10 10 12 syl2anc φxU,yUIBaseyBasex=xBaseExtStrCatU,yBaseExtStrCatUIBaseyBasex
14 7 2 8 9 4 11 13 funcestrcsetc φxUBasexExtStrCatUFuncSxU,yUIBaseyBasex
15 df-br xUBasexExtStrCatUFuncSxU,yUIBaseyBasexxUBasexxU,yUIBaseyBasexExtStrCatUFuncS
16 14 15 sylib φxUBasexxU,yUIBaseyBasexExtStrCatUFuncS
17 eqid BaseR=BaseR
18 1 17 4 ringcbas φBaseR=URing
19 incom URing=RingU
20 18 19 eqtrdi φBaseR=RingU
21 eqid HomR=HomR
22 1 17 4 21 ringchomfval φHomR=RingHomBaseR×BaseR
23 7 4 20 22 rhmsubcsetc φHomRSubcatExtStrCatU
24 16 23 funcres φxUBasexxU,yUIBaseyBasexfHomRExtStrCatUcatHomRFuncS
25 mptexg UWUnixUBasexV
26 4 25 syl φxUBasexV
27 fvex HomRV
28 27 a1i φHomRV
29 mpoexga UWUniUWUnixU,yUIBaseyBasexV
30 4 4 29 syl2anc φxU,yUIBaseyBasexV
31 18 22 rhmresfn φHomRFnBaseR×BaseR
32 26 28 30 31 resfval2 φxUBasexxU,yUIBaseyBasexfHomR=xUBasexBaseRaBaseR,bBaseRaxU,yUIBaseyBasexbaHomRb
33 inss1 URingU
34 18 33 eqsstrdi φBaseRU
35 34 resmptd φxUBasexBaseR=xBaseRBasex
36 3 a1i φB=BaseR
37 36 mpteq1d φxBBasex=xBaseRBasex
38 5 37 eqtr2d φxBaseRBasex=F
39 35 38 eqtrd φxUBasexBaseR=F
40 oveq1 x=axRingHomy=aRingHomy
41 40 reseq2d x=aIxRingHomy=IaRingHomy
42 oveq2 y=baRingHomy=aRingHomb
43 42 reseq2d y=bIaRingHomy=IaRingHomb
44 41 43 cbvmpov xB,yBIxRingHomy=aB,bBIaRingHomb
45 44 a1i φxB,yBIxRingHomy=aB,bBIaRingHomb
46 3 a1i φaBB=BaseR
47 eqidd φaBbBxU,yUIBaseyBasex=xU,yUIBaseyBasex
48 fveq2 y=bBasey=Baseb
49 fveq2 x=aBasex=Basea
50 48 49 oveqan12rd x=ay=bBaseyBasex=BasebBasea
51 50 reseq2d x=ay=bIBaseyBasex=IBasebBasea
52 51 adantl φaBbBx=ay=bIBaseyBasex=IBasebBasea
53 3 34 eqsstrid φBU
54 53 sseld φaBaU
55 54 com12 aBφaU
56 55 adantr aBbBφaU
57 56 impcom φaBbBaU
58 53 sseld φbBbU
59 58 adantld φaBbBbU
60 59 imp φaBbBbU
61 ovexd φaBbBBasebBaseaV
62 61 resiexd φaBbBIBasebBaseaV
63 47 52 57 60 62 ovmpod φaBbBaxU,yUIBaseyBasexb=IBasebBasea
64 63 reseq1d φaBbBaxU,yUIBaseyBasexbaHomRb=IBasebBaseaaHomRb
65 4 adantr φaBbBUWUni
66 simprl φaBbBaB
67 simprr φaBbBbB
68 1 3 65 21 66 67 ringchom φaBbBaHomRb=aRingHomb
69 68 reseq2d φaBbBIBasebBaseaaHomRb=IBasebBaseaaRingHomb
70 eqid Basea=Basea
71 eqid Baseb=Baseb
72 70 71 rhmf faRingHombf:BaseaBaseb
73 fvex BasebV
74 fvex BaseaV
75 73 74 pm3.2i BasebVBaseaV
76 75 a1i φaBbBBasebVBaseaV
77 elmapg BasebVBaseaVfBasebBaseaf:BaseaBaseb
78 76 77 syl φaBbBfBasebBaseaf:BaseaBaseb
79 72 78 imbitrrid φaBbBfaRingHombfBasebBasea
80 79 ssrdv φaBbBaRingHombBasebBasea
81 80 resabs1d φaBbBIBasebBaseaaRingHomb=IaRingHomb
82 64 69 81 3eqtrrd φaBbBIaRingHomb=axU,yUIBaseyBasexbaHomRb
83 36 46 82 mpoeq123dva φaB,bBIaRingHomb=aBaseR,bBaseRaxU,yUIBaseyBasexbaHomRb
84 6 45 83 3eqtrrd φaBaseR,bBaseRaxU,yUIBaseyBasexbaHomRb=G
85 39 84 opeq12d φxUBasexBaseRaBaseR,bBaseRaxU,yUIBaseyBasexbaHomRb=FG
86 32 85 eqtr2d φFG=xUBasexxU,yUIBaseyBasexfHomR
87 1 4 18 22 ringcval φR=ExtStrCatUcatHomR
88 87 oveq1d φRFuncS=ExtStrCatUcatHomRFuncS
89 24 86 88 3eltr4d φFGRFuncS
90 df-br FRFuncSGFGRFuncS
91 89 90 sylibr φFRFuncSG