Metamath Proof Explorer


Theorem gamcvg2lem

Description: Lemma for gamcvg2 . (Contributed by Mario Carneiro, 10-Jul-2017)

Ref Expression
Hypotheses gamcvg2.f F = m m + 1 m A A m + 1
gamcvg2.a φ A
gamcvg2.g G = m A log m + 1 m log A m + 1
Assertion gamcvg2lem φ exp seq 1 + G = seq 1 × F

Proof

Step Hyp Ref Expression
1 gamcvg2.f F = m m + 1 m A A m + 1
2 gamcvg2.a φ A
3 gamcvg2.g G = m A log m + 1 m log A m + 1
4 addcl n x n + x
5 4 adantl φ k n x n + x
6 simpll φ k n 1 k φ
7 elfznn n 1 k n
8 7 adantl φ k n 1 k n
9 oveq1 m = n m + 1 = n + 1
10 id m = n m = n
11 9 10 oveq12d m = n m + 1 m = n + 1 n
12 11 fveq2d m = n log m + 1 m = log n + 1 n
13 12 oveq2d m = n A log m + 1 m = A log n + 1 n
14 oveq2 m = n A m = A n
15 14 oveq1d m = n A m + 1 = A n + 1
16 15 fveq2d m = n log A m + 1 = log A n + 1
17 13 16 oveq12d m = n A log m + 1 m log A m + 1 = A log n + 1 n log A n + 1
18 ovex A log n + 1 n log A n + 1 V
19 17 3 18 fvmpt n G n = A log n + 1 n log A n + 1
20 19 adantl φ n G n = A log n + 1 n log A n + 1
21 2 adantr φ n A
22 21 eldifad φ n A
23 simpr φ n n
24 23 peano2nnd φ n n + 1
25 24 nnrpd φ n n + 1 +
26 23 nnrpd φ n n +
27 25 26 rpdivcld φ n n + 1 n +
28 27 relogcld φ n log n + 1 n
29 28 recnd φ n log n + 1 n
30 22 29 mulcld φ n A log n + 1 n
31 23 nncnd φ n n
32 23 nnne0d φ n n 0
33 22 31 32 divcld φ n A n
34 1cnd φ n 1
35 33 34 addcld φ n A n + 1
36 21 23 dmgmdivn0 φ n A n + 1 0
37 35 36 logcld φ n log A n + 1
38 30 37 subcld φ n A log n + 1 n log A n + 1
39 20 38 eqeltrd φ n G n
40 6 8 39 syl2anc φ k n 1 k G n
41 simpr φ k k
42 nnuz = 1
43 41 42 eleqtrdi φ k k 1
44 efadd n x e n + x = e n e x
45 44 adantl φ k n x e n + x = e n e x
46 efsub A log n + 1 n log A n + 1 e A log n + 1 n log A n + 1 = e A log n + 1 n e log A n + 1
47 30 37 46 syl2anc φ n e A log n + 1 n log A n + 1 = e A log n + 1 n e log A n + 1
48 31 34 addcld φ n n + 1
49 48 31 32 divcld φ n n + 1 n
50 24 nnne0d φ n n + 1 0
51 48 31 50 32 divne0d φ n n + 1 n 0
52 49 51 22 cxpefd φ n n + 1 n A = e A log n + 1 n
53 52 eqcomd φ n e A log n + 1 n = n + 1 n A
54 eflog A n + 1 A n + 1 0 e log A n + 1 = A n + 1
55 35 36 54 syl2anc φ n e log A n + 1 = A n + 1
56 53 55 oveq12d φ n e A log n + 1 n e log A n + 1 = n + 1 n A A n + 1
57 47 56 eqtrd φ n e A log n + 1 n log A n + 1 = n + 1 n A A n + 1
58 20 fveq2d φ n e G n = e A log n + 1 n log A n + 1
59 11 oveq1d m = n m + 1 m A = n + 1 n A
60 59 15 oveq12d m = n m + 1 m A A m + 1 = n + 1 n A A n + 1
61 ovex n + 1 n A A n + 1 V
62 60 1 61 fvmpt n F n = n + 1 n A A n + 1
63 62 adantl φ n F n = n + 1 n A A n + 1
64 57 58 63 3eqtr4d φ n e G n = F n
65 6 8 64 syl2anc φ k n 1 k e G n = F n
66 5 40 43 45 65 seqhomo φ k e seq 1 + G k = seq 1 × F k
67 66 mpteq2dva φ k e seq 1 + G k = k seq 1 × F k
68 eff exp :
69 68 a1i φ exp :
70 1z 1
71 70 a1i φ 1
72 42 71 39 serf φ seq 1 + G :
73 fcompt exp : seq 1 + G : exp seq 1 + G = k e seq 1 + G k
74 69 72 73 syl2anc φ exp seq 1 + G = k e seq 1 + G k
75 seqfn 1 seq 1 × F Fn 1
76 70 75 mp1i φ seq 1 × F Fn 1
77 42 fneq2i seq 1 × F Fn seq 1 × F Fn 1
78 76 77 sylibr φ seq 1 × F Fn
79 dffn5 seq 1 × F Fn seq 1 × F = k seq 1 × F k
80 78 79 sylib φ seq 1 × F = k seq 1 × F k
81 67 74 80 3eqtr4d φ exp seq 1 + G = seq 1 × F