Metamath Proof Explorer


Theorem hashnzfzclim

Description: As the upper bound K of the constraint interval ( J ... K ) in hashnzfz increases, the resulting count of multiples tends to ( K / M ) —that is, there are approximately ( K / M ) multiples of M in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypotheses hashnzfzclim.m φM
hashnzfzclim.j φJ
Assertion hashnzfzclim φkJ1MJkk1M

Proof

Step Hyp Ref Expression
1 hashnzfzclim.m φM
2 hashnzfzclim.j φJ
3 1 adantr φkJ1M
4 2 adantr φkJ1J
5 simpr φkJ1kJ1
6 3 4 5 hashnzfz φkJ1MJk=kMJ1M
7 6 oveq1d φkJ1MJkk=kMJ1Mk
8 7 mpteq2dva φkJ1MJkk=kJ1kMJ1Mk
9 nnuz =1
10 1z 1
11 10 a1i φ1
12 1 nncnd φM
13 1 nnne0d φM0
14 12 13 reccld φ1M
15 9 eqimss2i 1
16 nnex V
17 15 16 climconst2 1M1×1M1M
18 14 10 17 sylancl φ×1M1M
19 16 mptex k1M1kV
20 19 a1i φk1M1kV
21 ax-1cn 1
22 divcnv 1k1k0
23 21 22 mp1i φk1k0
24 ovex 1MV
25 24 fvconst2 x×1Mx=1M
26 25 adantl φx×1Mx=1M
27 14 adantr φx1M
28 26 27 eqeltrd φx×1Mx
29 eqidd φxk1k=k1k
30 oveq2 k=x1k=1x
31 30 adantl φxk=x1k=1x
32 simpr φxx
33 ovexd φx1xV
34 29 31 32 33 fvmptd φxk1kx=1x
35 32 nnrecred φx1x
36 34 35 eqeltrd φxk1kx
37 36 recnd φxk1kx
38 eqidd φxk1M1k=k1M1k
39 30 oveq2d k=x1M1k=1M1x
40 39 adantl φxk=x1M1k=1M1x
41 ovexd φx1M1xV
42 38 40 32 41 fvmptd φxk1M1kx=1M1x
43 26 34 oveq12d φx×1Mxk1kx=1M1x
44 42 43 eqtr4d φxk1M1kx=×1Mxk1kx
45 9 11 18 20 23 28 37 44 climsub φk1M1k1M0
46 14 subid1d φ1M0=1M
47 45 46 breqtrd φk1M1k1M
48 16 mptex kkMkV
49 48 a1i φkkMkV
50 1 nnrecred φ1M
51 50 adantr φx1M
52 nnre xx
53 52 adantl φxx
54 nnne0 xx0
55 54 adantl φxx0
56 53 55 rereccld φx1x
57 51 56 resubcld φx1M1x
58 42 57 eqeltrd φxk1M1kx
59 eqidd φxkkMk=kkMk
60 fvoveq1 k=xkM=xM
61 id k=xk=x
62 60 61 oveq12d k=xkMk=xMx
63 62 adantl φxk=xkMk=xMx
64 ovexd φxxMxV
65 59 63 32 64 fvmptd φxkkMkx=xMx
66 1 adantr φxM
67 53 66 nndivred φxxM
68 reflcl xMxM
69 67 68 syl φxxM
70 69 53 55 redivcld φxxMx
71 65 70 eqeltrd φxkkMkx
72 67 recnd φxxM
73 1cnd φx1
74 nncn xx
75 74 adantl φxx
76 72 73 75 55 divsubdird φxxM1x=xMx1x
77 12 adantr φxM
78 13 adantr φxM0
79 75 77 78 divrecd φxxM=x1M
80 79 oveq1d φxxMx=x1Mx
81 27 75 55 divcan3d φxx1Mx=1M
82 80 81 eqtrd φxxMx=1M
83 82 oveq1d φxxMx1x=1M1x
84 76 83 eqtrd φxxM1x=1M1x
85 1red φx1
86 67 85 resubcld φxxM1
87 nnrp xx+
88 87 adantl φxx+
89 69 85 readdcld φxxM+1
90 flle xMxMxM
91 67 90 syl φxxMxM
92 flflp1 xMxMxMxMxM<xM+1
93 67 67 92 syl2anc φxxMxMxM<xM+1
94 91 93 mpbid φxxM<xM+1
95 67 89 85 94 ltsub1dd φxxM1<xM+1-1
96 69 recnd φxxM
97 96 73 pncand φxxM+1-1=xM
98 95 97 breqtrd φxxM1<xM
99 86 69 88 98 ltdiv1dd φxxM1x<xMx
100 84 99 eqbrtrrd φx1M1x<xMx
101 57 70 100 ltled φx1M1xxMx
102 simpr φxk=xk=x
103 102 fvoveq1d φxk=xkM=xM
104 103 102 oveq12d φxk=xkMk=xMx
105 59 104 32 64 fvmptd φxkkMkx=xMx
106 101 42 105 3brtr4d φxk1M1kxkkMkx
107 69 67 88 91 lediv1dd φxxMxxMx
108 107 82 breqtrd φxxMx1M
109 105 108 eqbrtrd φxkkMkx1M
110 9 11 47 49 58 71 106 109 climsqz φkkMk1M
111 16 mptex kkMJ1MkV
112 111 a1i φkkMJ1MkV
113 2 zred φJ
114 1red φ1
115 113 114 resubcld φJ1
116 115 1 nndivred φJ1M
117 116 flcld φJ1M
118 117 zcnd φJ1M
119 divcnv J1MkJ1Mk0
120 118 119 syl φkJ1Mk0
121 71 recnd φxkkMkx
122 eqidd φxkJ1Mk=kJ1Mk
123 oveq2 k=xJ1Mk=J1Mx
124 123 adantl φxk=xJ1Mk=J1Mx
125 ovexd φxJ1MxV
126 122 124 32 125 fvmptd φxkJ1Mkx=J1Mx
127 118 adantr φxJ1M
128 127 75 55 divcld φxJ1Mx
129 126 128 eqeltrd φxkJ1Mkx
130 96 127 75 55 divsubdird φxxMJ1Mx=xMxJ1Mx
131 eqidd φxkkMJ1Mk=kkMJ1Mk
132 60 oveq1d k=xkMJ1M=xMJ1M
133 132 61 oveq12d k=xkMJ1Mk=xMJ1Mx
134 133 adantl φxk=xkMJ1Mk=xMJ1Mx
135 ovexd φxxMJ1MxV
136 131 134 32 135 fvmptd φxkkMJ1Mkx=xMJ1Mx
137 65 126 oveq12d φxkkMkxkJ1Mkx=xMxJ1Mx
138 130 136 137 3eqtr4d φxkkMJ1Mkx=kkMkxkJ1Mkx
139 9 11 110 112 120 121 129 138 climsub φkkMJ1Mk1M0
140 139 46 breqtrd φkkMJ1Mk1M
141 uzssz J1
142 resmpt J1kkMJ1MkJ1=kJ1kMJ1Mk
143 141 142 ax-mp kkMJ1MkJ1=kJ1kMJ1Mk
144 143 breq1i kkMJ1MkJ11MkJ1kMJ1Mk1M
145 2 11 zsubcld φJ1
146 zex V
147 146 mptex kkMJ1MkV
148 climres J1kkMJ1MkVkkMJ1MkJ11MkkMJ1Mk1M
149 145 147 148 sylancl φkkMJ1MkJ11MkkMJ1Mk1M
150 144 149 bitr3id φkJ1kMJ1Mk1MkkMJ1Mk1M
151 9 reseq2i kkMJ1Mk=kkMJ1Mk1
152 151 breq1i kkMJ1Mk1MkkMJ1Mk11M
153 nnssz
154 resmpt kkMJ1Mk=kkMJ1Mk
155 153 154 ax-mp kkMJ1Mk=kkMJ1Mk
156 155 breq1i kkMJ1Mk1MkkMJ1Mk1M
157 climres 1kkMJ1MkVkkMJ1Mk11MkkMJ1Mk1M
158 10 147 157 mp2an kkMJ1Mk11MkkMJ1Mk1M
159 152 156 158 3bitr3i kkMJ1Mk1MkkMJ1Mk1M
160 150 159 bitr4di φkJ1kMJ1Mk1MkkMJ1Mk1M
161 140 160 mpbird φkJ1kMJ1Mk1M
162 8 161 eqbrtrd φkJ1MJkk1M