Metamath Proof Explorer


Theorem hdmap1l6d

Description: Lemmma for hdmap1l6 . (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6d.xn φ¬XNYZ
hdmap1l6d.yz φNY=NZ
hdmap1l6d.y φYV0˙
hdmap1l6d.z φZV0˙
hdmap1l6d.w φwV0˙
hdmap1l6d.wn φ¬wNXY
Assertion hdmap1l6d φIXFw+˙Y+˙Z=IXFw˙IXFY+˙Z

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6d.xn φ¬XNYZ
21 hdmap1l6d.yz φNY=NZ
22 hdmap1l6d.y φYV0˙
23 hdmap1l6d.z φZV0˙
24 hdmap1l6d.w φwV0˙
25 hdmap1l6d.wn φ¬wNXY
26 1 8 16 lcdlmod φCLMod
27 1 2 16 dvhlvec φULVec
28 24 eldifad φwV
29 18 eldifad φXV
30 22 eldifad φYV
31 3 7 27 28 29 30 25 lspindpi φNwNXNwNY
32 31 simpld φNwNX
33 32 necomd φNXNw
34 1 2 3 6 7 8 9 13 14 15 16 17 19 33 18 28 hdmap1cl φIXFwD
35 9 10 12 lmod0vrid CLModIXFwDIXFw˙Q=IXFw
36 26 34 35 syl2anc φIXFw˙Q=IXFw
37 36 adantr φY+˙Z=0˙IXFw˙Q=IXFw
38 oteq3 Y+˙Z=0˙XFY+˙Z=XF0˙
39 38 fveq2d Y+˙Z=0˙IXFY+˙Z=IXF0˙
40 1 2 3 6 8 9 12 15 16 17 29 hdmap1val0 φIXF0˙=Q
41 39 40 sylan9eqr φY+˙Z=0˙IXFY+˙Z=Q
42 41 oveq2d φY+˙Z=0˙IXFw˙IXFY+˙Z=IXFw˙Q
43 oveq2 Y+˙Z=0˙w+˙Y+˙Z=w+˙0˙
44 1 2 16 dvhlmod φULMod
45 3 4 6 lmod0vrid ULModwVw+˙0˙=w
46 44 28 45 syl2anc φw+˙0˙=w
47 43 46 sylan9eqr φY+˙Z=0˙w+˙Y+˙Z=w
48 47 oteq3d φY+˙Z=0˙XFw+˙Y+˙Z=XFw
49 48 fveq2d φY+˙Z=0˙IXFw+˙Y+˙Z=IXFw
50 37 42 49 3eqtr4rd φY+˙Z=0˙IXFw+˙Y+˙Z=IXFw˙IXFY+˙Z
51 16 adantr φY+˙Z0˙KHLWH
52 17 adantr φY+˙Z0˙FD
53 18 adantr φY+˙Z0˙XV0˙
54 19 adantr φY+˙Z0˙MNX=LF
55 24 adantr φY+˙Z0˙wV0˙
56 23 eldifad φZV
57 3 4 lmodvacl ULModYVZVY+˙ZV
58 44 30 56 57 syl3anc φY+˙ZV
59 58 anim1i φY+˙Z0˙Y+˙ZVY+˙Z0˙
60 eldifsn Y+˙ZV0˙Y+˙ZVY+˙Z0˙
61 59 60 sylibr φY+˙Z0˙Y+˙ZV0˙
62 3 7 27 29 30 56 20 lspindpi φNXNYNXNZ
63 62 simpld φNXNY
64 3 4 6 7 27 18 22 23 24 21 63 25 mapdindp1 φNXNY+˙Z
65 3 4 6 7 27 18 22 23 24 21 63 25 mapdindp2 φ¬wNXY+˙Z
66 3 6 7 27 18 58 28 64 65 lspindp1 φNwNY+˙Z¬XNwY+˙Z
67 66 simprd φ¬XNwY+˙Z
68 67 adantr φY+˙Z0˙¬XNwY+˙Z
69 31 simprd φNwNY
70 3 6 7 27 24 30 69 lspsnne1 φ¬wNY
71 eqid LSSumU=LSSumU
72 3 7 71 44 30 56 lsmpr φNYZ=NYLSSumUNZ
73 21 oveq2d φNYLSSumUNY=NYLSSumUNZ
74 eqid LSubSpU=LSubSpU
75 3 74 7 lspsncl ULModYVNYLSubSpU
76 44 30 75 syl2anc φNYLSubSpU
77 74 lsssubg ULModNYLSubSpUNYSubGrpU
78 44 76 77 syl2anc φNYSubGrpU
79 71 lsmidm NYSubGrpUNYLSSumUNY=NY
80 78 79 syl φNYLSSumUNY=NY
81 72 73 80 3eqtr2d φNYZ=NY
82 70 81 neleqtrrd φ¬wNYZ
83 3 4 7 44 30 56 28 82 lspindp4 φ¬wNYY+˙Z
84 3 7 27 28 30 58 83 lspindpi φNwNYNwNY+˙Z
85 84 simprd φNwNY+˙Z
86 85 adantr φY+˙Z0˙NwNY+˙Z
87 eqidd φY+˙Z0˙IXFw=IXFw
88 eqidd φY+˙Z0˙IXFY+˙Z=IXFY+˙Z
89 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 51 52 53 54 55 61 68 86 87 88 hdmap1l6a φY+˙Z0˙IXFw+˙Y+˙Z=IXFw˙IXFY+˙Z
90 50 89 pm2.61dane φIXFw+˙Y+˙Z=IXFw˙IXFY+˙Z