Metamath Proof Explorer


Theorem hdmapinvlem3

Description: Line 30 in Baer p. 110, f(sw + u, tw - v) = 0. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hdmapinvlem3.h H=LHypK
hdmapinvlem3.e E=IBaseKILTrnKW
hdmapinvlem3.o O=ocHKW
hdmapinvlem3.u U=DVecHKW
hdmapinvlem3.v V=BaseU
hdmapinvlem3.p +˙=+U
hdmapinvlem3.m -˙=-U
hdmapinvlem3.q ·˙=U
hdmapinvlem3.r R=ScalarU
hdmapinvlem3.b B=BaseR
hdmapinvlem3.t ×˙=R
hdmapinvlem3.z 0˙=0R
hdmapinvlem3.s S=HDMapKW
hdmapinvlem3.g G=HGMapKW
hdmapinvlem3.k φKHLWH
hdmapinvlem3.c φCOE
hdmapinvlem3.d φDOE
hdmapinvlem3.i φIB
hdmapinvlem3.j φJB
hdmapinvlem3.ij φI×˙GJ=SDC
Assertion hdmapinvlem3 φSJ·˙E-˙DI·˙E+˙C=0˙

Proof

Step Hyp Ref Expression
1 hdmapinvlem3.h H=LHypK
2 hdmapinvlem3.e E=IBaseKILTrnKW
3 hdmapinvlem3.o O=ocHKW
4 hdmapinvlem3.u U=DVecHKW
5 hdmapinvlem3.v V=BaseU
6 hdmapinvlem3.p +˙=+U
7 hdmapinvlem3.m -˙=-U
8 hdmapinvlem3.q ·˙=U
9 hdmapinvlem3.r R=ScalarU
10 hdmapinvlem3.b B=BaseR
11 hdmapinvlem3.t ×˙=R
12 hdmapinvlem3.z 0˙=0R
13 hdmapinvlem3.s S=HDMapKW
14 hdmapinvlem3.g G=HGMapKW
15 hdmapinvlem3.k φKHLWH
16 hdmapinvlem3.c φCOE
17 hdmapinvlem3.d φDOE
18 hdmapinvlem3.i φIB
19 hdmapinvlem3.j φJB
20 hdmapinvlem3.ij φI×˙GJ=SDC
21 eqid LCDualKW=LCDualKW
22 eqid -LCDualKW=-LCDualKW
23 1 4 15 dvhlmod φULMod
24 eqid BaseK=BaseK
25 eqid LTrnKW=LTrnKW
26 eqid 0U=0U
27 1 24 25 4 5 26 2 15 dvheveccl φEV0U
28 27 eldifad φEV
29 5 9 8 10 lmodvscl ULModJBEVJ·˙EV
30 23 19 28 29 syl3anc φJ·˙EV
31 28 snssd φEV
32 1 4 5 3 dochssv KHLWHEVOEV
33 15 31 32 syl2anc φOEV
34 33 17 sseldd φDV
35 1 4 5 7 21 22 13 15 30 34 hdmapsub φSJ·˙E-˙D=SJ·˙E-LCDualKWSD
36 35 fveq1d φSJ·˙E-˙DI·˙E+˙C=SJ·˙E-LCDualKWSDI·˙E+˙C
37 eqid -R=-R
38 eqid BaseLCDualKW=BaseLCDualKW
39 1 4 5 21 38 13 15 30 hdmapcl φSJ·˙EBaseLCDualKW
40 1 4 5 21 38 13 15 34 hdmapcl φSDBaseLCDualKW
41 5 9 8 10 lmodvscl ULModIBEVI·˙EV
42 23 18 28 41 syl3anc φI·˙EV
43 33 16 sseldd φCV
44 5 6 lmodvacl ULModI·˙EVCVI·˙E+˙CV
45 23 42 43 44 syl3anc φI·˙E+˙CV
46 1 4 5 9 37 21 38 22 15 39 40 45 lcdvsubval φSJ·˙E-LCDualKWSDI·˙E+˙C=SJ·˙EI·˙E+˙C-RSDI·˙E+˙C
47 eqid +R=+R
48 1 4 5 6 9 47 13 15 42 43 30 hdmaplna1 φSJ·˙EI·˙E+˙C=SJ·˙EI·˙E+RSJ·˙EC
49 1 4 5 8 9 10 11 13 14 15 42 28 19 hdmapglnm2 φSJ·˙EI·˙E=SEI·˙E×˙GJ
50 1 4 5 8 9 10 11 13 15 28 28 18 hdmaplnm1 φSEI·˙E=I×˙SEE
51 eqid HVMapKW=HVMapKW
52 eqid 1R=1R
53 1 2 51 13 15 4 9 52 hdmapevec2 φSEE=1R
54 53 oveq2d φI×˙SEE=I×˙1R
55 9 lmodring ULModRRing
56 23 55 syl φRRing
57 10 11 52 ringridm RRingIBI×˙1R=I
58 56 18 57 syl2anc φI×˙1R=I
59 50 54 58 3eqtrd φSEI·˙E=I
60 59 oveq1d φSEI·˙E×˙GJ=I×˙GJ
61 49 60 eqtrd φSJ·˙EI·˙E=I×˙GJ
62 1 4 5 8 9 10 11 13 14 15 43 28 19 hdmapglnm2 φSJ·˙EC=SEC×˙GJ
63 1 2 3 4 5 9 10 11 12 13 15 16 hdmapinvlem1 φSEC=0˙
64 63 oveq1d φSEC×˙GJ=0˙×˙GJ
65 1 4 9 10 14 15 19 hgmapcl φGJB
66 10 11 12 ringlz RRingGJB0˙×˙GJ=0˙
67 56 65 66 syl2anc φ0˙×˙GJ=0˙
68 62 64 67 3eqtrd φSJ·˙EC=0˙
69 61 68 oveq12d φSJ·˙EI·˙E+RSJ·˙EC=I×˙GJ+R0˙
70 ringgrp RRingRGrp
71 56 70 syl φRGrp
72 9 10 11 lmodmcl ULModIBGJBI×˙GJB
73 23 18 65 72 syl3anc φI×˙GJB
74 10 47 12 grprid RGrpI×˙GJBI×˙GJ+R0˙=I×˙GJ
75 71 73 74 syl2anc φI×˙GJ+R0˙=I×˙GJ
76 48 69 75 3eqtrd φSJ·˙EI·˙E+˙C=I×˙GJ
77 1 4 5 6 9 47 13 15 42 43 34 hdmaplna1 φSDI·˙E+˙C=SDI·˙E+RSDC
78 1 4 5 8 9 10 11 13 15 28 34 18 hdmaplnm1 φSDI·˙E=I×˙SDE
79 1 2 3 4 5 9 10 11 12 13 15 17 hdmapinvlem2 φSDE=0˙
80 79 oveq2d φI×˙SDE=I×˙0˙
81 10 11 12 ringrz RRingIBI×˙0˙=0˙
82 56 18 81 syl2anc φI×˙0˙=0˙
83 78 80 82 3eqtrrd φ0˙=SDI·˙E
84 83 20 oveq12d φ0˙+RI×˙GJ=SDI·˙E+RSDC
85 10 47 12 grplid RGrpI×˙GJB0˙+RI×˙GJ=I×˙GJ
86 71 73 85 syl2anc φ0˙+RI×˙GJ=I×˙GJ
87 77 84 86 3eqtr2d φSDI·˙E+˙C=I×˙GJ
88 76 87 oveq12d φSJ·˙EI·˙E+˙C-RSDI·˙E+˙C=I×˙GJ-RI×˙GJ
89 46 88 eqtrd φSJ·˙E-LCDualKWSDI·˙E+˙C=I×˙GJ-RI×˙GJ
90 10 12 37 grpsubid RGrpI×˙GJBI×˙GJ-RI×˙GJ=0˙
91 71 73 90 syl2anc φI×˙GJ-RI×˙GJ=0˙
92 36 89 91 3eqtrd φSJ·˙E-˙DI·˙E+˙C=0˙